© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n48
K11n48
K11n50
K11n50
K11n49
Knotscape
This page is passe. Go here instead!

   The Knot K11n49

Visit K11n49's page at Knotilus!

Acknowledgement

K11n49 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X5,12,6,13 X7,17,8,16 X2,9,3,10 X11,19,12,18 X13,22,14,1 X15,20,16,21 X17,11,18,10 X19,7,20,6 X21,14,22,15

Gauss Code: {1, -5, 2, -1, -3, 10, -4, -2, 5, 9, -6, 3, -7, 11, -8, 4, -9, 6, -10, 8, -11, 7}

DT (Dowker-Thistlethwaite) Code: 4 8 -12 -16 2 -18 -22 -20 -10 -6 -14

Alexander Polynomial: - t-2 + 3 - t2

Conway Polynomial: 1 - 4z2 - z4

Other knots with the same Alexander/Conway Polynomial: {K11n116, ...}

Determinant and Signature: {1, 0}

Jones Polynomial: q-5 - q-4 + q-3 - q-2 + 1 - q + q2 - q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-16 + q-14 + q-12 - q-8 - q-6 - 2q-4 + q-2 + 1 + q2 - q6 + q12 + q14

HOMFLY-PT Polynomial: a-4 - a-2 - a-2z2 + 2 - 3a2 - 4a2z2 - a2z4 + 2a4 + a4z2

Kauffman Polynomial: a-4 - 3a-4z2 + a-4z4 + a-3z - 3a-3z3 + a-3z5 + a-2 - 3a-2z2 + a-2z4 + a-1z - a-1z3 + 2 - 7z2 + 13z4 - 7z6 + z8 + 3az - 10az3 + 14az5 - 7az7 + az9 + 3a2 - 18a2z2 + 28a2z4 - 14a2z6 + 2a2z8 + 3a3z - 12a3z3 + 15a3z5 - 7a3z7 + a3z9 + 2a4 - 11a4z2 + 15a4z4 - 7a4z6 + a4z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {-4, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1149. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9          1
j = 7           
j = 5        11 
j = 3      11   
j = 1      11   
j = -1    122    
j = -3   1       
j = -5   11      
j = -7 11        
j = -9           
j = -111          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 49]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 49]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[5, 12, 6, 13], X[7, 17, 8, 16], 
 
>   X[2, 9, 3, 10], X[11, 19, 12, 18], X[13, 22, 14, 1], X[15, 20, 16, 21], 
 
>   X[17, 11, 18, 10], X[19, 7, 20, 6], X[21, 14, 22, 15]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 49]]
Out[4]=   
GaussCode[1, -5, 2, -1, -3, 10, -4, -2, 5, 9, -6, 3, -7, 11, -8, 4, -9, 6, -10, 
 
>   8, -11, 7]
In[5]:=
DTCode[Knot[11, NonAlternating, 49]]
Out[5]=   
DTCode[4, 8, -12, -16, 2, -18, -22, -20, -10, -6, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 49]][t]
Out[6]=   
     -2    2
3 - t   - t
In[7]:=
Conway[Knot[11, NonAlternating, 49]][z]
Out[7]=   
       2    4
1 - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 49], Knot[11, NonAlternating, 116]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 49]], KnotSignature[Knot[11, NonAlternating, 49]]}
Out[9]=   
{1, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 49]][q]
Out[10]=   
     -5    -4    -3    -2        2    3    4
1 + q   - q   + q   - q   - q + q  - q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 49]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 49]][q]
Out[12]=   
     -16    -14    -12    -8    -6   2     -2    2    6    12    14
1 + q    + q    + q    - q   - q   - -- + q   + q  - q  + q   + q
                                      4
                                     q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 49]][a, z]
Out[13]=   
                               2
     -4    -2      2      4   z       2  2    4  2    2  4
2 + a   - a   - 3 a  + 2 a  - -- - 4 a  z  + a  z  - a  z
                               2
                              a
In[14]:=
Kauffman[Knot[11, NonAlternating, 49]][a, z]
Out[14]=   
                                                                  2      2
     -4    -2      2      4   z    z              3        2   3 z    3 z
2 + a   + a   + 3 a  + 2 a  + -- + - + 3 a z + 3 a  z - 7 z  - ---- - ---- - 
                               3   a                             4      2
                              a                                 a      a
 
                             3    3                                 4    4
        2  2       4  2   3 z    z          3       3  3       4   z    z
>   18 a  z  - 11 a  z  - ---- - -- - 10 a z  - 12 a  z  + 13 z  + -- + -- + 
                            3    a                                  4    2
                           a                                       a    a
 
                           5
        2  4       4  4   z          5       3  5      6       2  6      4  6
>   28 a  z  + 15 a  z  + -- + 14 a z  + 15 a  z  - 7 z  - 14 a  z  - 7 a  z  - 
                           3
                          a
 
         7      3  7    8      2  8    4  8      9    3  9
>   7 a z  - 7 a  z  + z  + 2 a  z  + a  z  + a z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 49]], Vassiliev[3][Knot[11, NonAlternating, 49]]}
Out[15]=   
{-4, 1}
In[16]:=
Kh[Knot[11, NonAlternating, 49]][q, t]
Out[16]=   
2        3     1        1       1       1       1       1      1      2
- + q + q  + ------ + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q             11  6    7  5    7  4    5  3    3  3    5  2      2   q t
             q   t    q  t    q  t    q  t    q  t    q  t    q t
 
           3      5  2    5  3    9  4
>   q t + q  t + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n49
K11n48
K11n48
K11n50
K11n50