© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n27
K11n27
K11n29
K11n29
K11n28
Knotscape
This page is passe. Go here instead!

   The Knot K11n28

Visit K11n28's page at Knotilus!

Acknowledgement

K11n28 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X9,15,10,14 X11,18,12,19 X6,13,7,14 X15,1,16,22 X17,21,18,20 X19,10,20,11 X21,17,22,16

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, -5, 10, -6, -3, 7, 5, -8, 11, -9, 6, -10, 9, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 -14 -18 6 -22 -20 -10 -16

Alexander Polynomial: t-2 - 5t-1 + 9 - 5t + t2

Conway Polynomial: 1 - z2 + z4

Other knots with the same Alexander/Conway Polynomial: {77, ...}

Determinant and Signature: {21, 0}

Jones Polynomial: q-2 - q-1 + 2 - 3q + 3q2 - 3q3 + 3q4 - 2q5 + 2q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11n64, ...}

A2 (sl(3)) Invariant: q-8 + q-6 + q-2 - q2 - q4 - q6 + q10 + q12 + 2q14 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 3a-4 + 3a-4z2 + a-4z4 - 2a-2 - 2a-2z2 - z2 + a2

Kauffman Polynomial: - a-7z + 6a-7z3 - 5a-7z5 + a-7z7 + a-6 - 8a-6z2 + 17a-6z4 - 11a-6z6 + 2a-6z8 + 2a-5z3 + 2a-5z5 - 4a-5z7 + a-5z9 + 3a-4 - 17a-4z2 + 26a-4z4 - 16a-4z6 + 3a-4z8 + 4a-3z - 10a-3z3 + 9a-3z5 - 5a-3z7 + a-3z9 + 2a-2 - 10a-2z2 + 10a-2z4 - 5a-2z6 + a-2z8 + 3a-1z - 5a-1z3 + 2a-1z5 + z4 + az3 - a2 + a2z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1128. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 15         1
j = 13        1 
j = 11       11 
j = 9      21  
j = 7     11   
j = 5    22    
j = 3   11     
j = 1  12      
j = -1 12       
j = -3          
j = -51         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 28]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 28]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[9, 15, 10, 14], X[11, 18, 12, 19], X[6, 13, 7, 14], X[15, 1, 16, 22], 
 
>   X[17, 21, 18, 20], X[19, 10, 20, 11], X[21, 17, 22, 16]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 28]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, -5, 10, -6, -3, 7, 5, -8, 11, -9, 6, -10, 
 
>   9, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 28]]
Out[5]=   
DTCode[4, 8, 12, 2, -14, -18, 6, -22, -20, -10, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 28]][t]
Out[6]=   
     -2   5          2
9 + t   - - - 5 t + t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 28]][z]
Out[7]=   
     2    4
1 - z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[7, 7], Knot[11, NonAlternating, 28]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 28]], KnotSignature[Knot[11, NonAlternating, 28]]}
Out[9]=   
{21, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 28]][q]
Out[10]=   
     -2   1            2      3      4      5      6    7
2 + q   - - - 3 q + 3 q  - 3 q  + 3 q  - 2 q  + 2 q  - q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 28], Knot[11, NonAlternating, 64]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 28]][q]
Out[12]=   
 -8    -6    -2    2    4    6    10    12      14    22
q   + q   + q   - q  - q  - q  + q   + q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 28]][a, z]
Out[13]=   
                            2      2      2    4
  -6   3    2     2    2   z    3 z    2 z    z
-a   + -- - -- + a  - z  - -- + ---- - ---- + --
        4    2              6     4      2     4
       a    a              a     a      a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 28]][a, z]
Out[14]=   
                                         2       2       2              3
 -6   3    2     2   z    4 z   3 z   8 z    17 z    10 z     2  2   6 z
a   + -- + -- - a  - -- + --- + --- - ---- - ----- - ----- + a  z  + ---- + 
       4    2         7    3     a      6      4       2               7
      a    a         a    a            a      a       a               a
 
       3       3      3                   4       4       4      5      5
    2 z    10 z    5 z       3    4   17 z    26 z    10 z    5 z    2 z
>   ---- - ----- - ---- + a z  + z  + ----- + ----- + ----- - ---- + ---- + 
      5      3      a                   6       4       2       7      5
     a      a                          a       a       a       a      a
 
       5      5       6       6      6    7      7      7      8      8    8
    9 z    2 z    11 z    16 z    5 z    z    4 z    5 z    2 z    3 z    z
>   ---- + ---- - ----- - ----- - ---- + -- - ---- - ---- + ---- + ---- + -- + 
      3     a       6       4       2     7     5      3      6      4     2
     a             a       a       a     a     a      a      a      a     a
 
     9    9
    z    z
>   -- + --
     5    3
    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 28]], Vassiliev[3][Knot[11, NonAlternating, 28]]}
Out[15]=   
{-1, 1}
In[16]:=
Kh[Knot[11, NonAlternating, 28]][q, t]
Out[16]=   
2         1      1             3      3  2      5  2      5  3    7  3
- + q + ----- + --- + 2 q t + q  t + q  t  + 2 q  t  + 2 q  t  + q  t  + 
q        5  2   q t
        q  t
 
     7  4      9  4    9  5    11  5    11  6    13  6    15  7
>   q  t  + 2 q  t  + q  t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n28
K11n27
K11n27
K11n29
K11n29