© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n23
K11n23
K11n25
K11n25
K11n24
Knotscape
This page is passe. Go here instead!

   The Knot K11n24

Visit K11n24's page at Knotilus!

Acknowledgement

K11n24 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X11,18,12,19 X6,13,7,14 X15,21,16,20 X17,1,18,22 X19,10,20,11 X21,17,22,16

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, 10, -6, -3, 7, -5, -8, 11, -9, 6, -10, 8, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 14 -18 6 -20 -22 -10 -16

Alexander Polynomial: t-3 - 3t-2 + 5t-1 - 5 + 5t - 3t2 + t3

Conway Polynomial: 1 + 2z2 + 3z4 + z6

Other knots with the same Alexander/Conway Polynomial: {87, ...}

Determinant and Signature: {23, 2}

Jones Polynomial: - q-4 + 2q-3 - 3q-2 + 4q-1 - 3 + 4q - 3q2 + 2q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 - q-8 + q-4 + q-2 + 3 + q2 + q4 - q8 - q12

HOMFLY-PT Polynomial: - 2a-2 - 3a-2z2 - a-2z4 + 5 + 8z2 + 5z4 + z6 - 2a2 - 3a2z2 - a2z4

Kauffman Polynomial: - 3a-3z + 7a-3z3 - 5a-3z5 + a-3z7 + 2a-2 - 8a-2z2 + 14a-2z4 - 10a-2z6 + 2a-2z8 - 7a-1z + 16a-1z3 - 8a-1z5 - 2a-1z7 + a-1z9 + 5 - 16z2 + 28z4 - 20z6 + 4z8 - 7az + 16az3 - 8az5 - 2az7 + az9 + 2a2 - 8a2z2 + 14a2z4 - 10a2z6 + 2a2z8 - 3a3z + 7a3z3 - 5a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1124. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 9        1
j = 7       1 
j = 5      21 
j = 3     21  
j = 1    23   
j = -1   221   
j = -3  12     
j = -5 12      
j = -7 1       
j = -91        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 24]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 24]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[14, 9, 15, 10], X[11, 18, 12, 19], X[6, 13, 7, 14], X[15, 21, 16, 20], 
 
>   X[17, 1, 18, 22], X[19, 10, 20, 11], X[21, 17, 22, 16]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 24]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, 10, -6, -3, 7, -5, -8, 11, -9, 6, -10, 
 
>   8, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 24]]
Out[5]=   
DTCode[4, 8, 12, 2, 14, -18, 6, -20, -22, -10, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 24]][t]
Out[6]=   
      -3   3    5            2    3
-5 + t   - -- + - + 5 t - 3 t  + t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 24]][z]
Out[7]=   
       2      4    6
1 + 2 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 7], Knot[11, NonAlternating, 24]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 24]], KnotSignature[Knot[11, NonAlternating, 24]]}
Out[9]=   
{23, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 24]][q]
Out[10]=   
      -4   2    3    4            2      3    4
-3 - q   + -- - -- + - + 4 q - 3 q  + 2 q  - q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 24]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 24]][q]
Out[12]=   
     -12    -8    -4    -2    2    4    8    12
3 - q    - q   + q   + q   + q  + q  - q  - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 24]][a, z]
Out[13]=   
                          2                     4
    2       2      2   3 z       2  2      4   z     2  4    6
5 - -- - 2 a  + 8 z  - ---- - 3 a  z  + 5 z  - -- - a  z  + z
     2                   2                      2
    a                   a                      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 24]][a, z]
Out[14]=   
                                                        2                3
    2       2   3 z   7 z              3         2   8 z       2  2   7 z
5 + -- + 2 a  - --- - --- - 7 a z - 3 a  z - 16 z  - ---- - 8 a  z  + ---- + 
     2           3     a                               2                3
    a           a                                     a                a
 
        3                                   4                 5      5
    16 z          3      3  3       4   14 z        2  4   5 z    8 z
>   ----- + 16 a z  + 7 a  z  + 28 z  + ----- + 14 a  z  - ---- - ---- - 
      a                                   2                  3     a
                                         a                  a
 
                                   6               7      7
         5      3  5       6   10 z        2  6   z    2 z         7    3  7
>   8 a z  - 5 a  z  - 20 z  - ----- - 10 a  z  + -- - ---- - 2 a z  + a  z  + 
                                 2                 3    a
                                a                 a
 
              8              9
       8   2 z       2  8   z       9
>   4 z  + ---- + 2 a  z  + -- + a z
             2              a
            a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 24]], Vassiliev[3][Knot[11, NonAlternating, 24]]}
Out[15]=   
{2, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 24]][q, t]
Out[16]=   
1            3     1       1       1       2       1       2      2      2
- + 3 q + 2 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q                 9  5    7  4    5  4    5  3    3  3    3  2      2   q t
                 q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    2 q    3        5      5  2    7  2    9  3
>   --- + q  t + 2 q  t + q  t  + q  t  + q  t
     t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n24
K11n23
K11n23
K11n25
K11n25