© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n20
K11n20
K11n22
K11n22
K11n21
Knotscape
This page is passe. Go here instead!

   The Knot K11n21

Visit K11n21's page at Knotilus!

Acknowledgement

K11n21 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X9,15,10,14 X11,19,12,18 X6,13,7,14 X15,20,16,21 X17,11,18,10 X19,22,20,1 X21,16,22,17

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, -5, 9, -6, -3, 7, 5, -8, 11, -9, 6, -10, 8, -11, 10}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 -14 -18 6 -20 -10 -22 -16

Alexander Polynomial: - t-3 + 5t-2 - 11t-1 + 15 - 11t + 5t2 - t3

Conway Polynomial: 1 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {927, K11n4, K11n172, ...}

Determinant and Signature: {49, 0}

Jones Polynomial: - q-3 + 3q-2 - 5q-1 + 8 - 8q + 8q2 - 7q3 + 5q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {941, K11n4, ...}

A2 (sl(3)) Invariant: - q-10 + q-6 - q-4 + 3q-2 + 1 + q2 + q4 - 2q6 + q8 - 2q10 + q14 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 3a-2 - 6a-2z2 - 4a-2z4 - a-2z6 + 4 + 5z2 + 2z4 - a2 - a2z2

Kauffman Polynomial: 2a-6z2 - 3a-6z4 + a-6z6 - 2a-5z + 8a-5z3 - 10a-5z5 + 3a-5z7 + a-4 - a-4z2 + 3a-4z4 - 8a-4z6 + 3a-4z8 - 5a-3z + 16a-3z3 - 17a-3z5 + 3a-3z7 + a-3z9 + 3a-2 - 10a-2z2 + 16a-2z4 - 15a-2z6 + 5a-2z8 - 5a-1z + 12a-1z3 - 8a-1z5 + a-1z7 + a-1z9 + 4 - 10z2 + 13z4 - 6z6 + 2z8 - 3az + 5az3 - az5 + az7 + a2 - 3a2z2 + 3a2z4 - a3z + a3z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1121. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13         1
j = 11        2 
j = 9       31 
j = 7      42  
j = 5     43   
j = 3    44    
j = 1   44     
j = -1  25      
j = -3 13       
j = -5 2        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 21]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 21]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[9, 15, 10, 14], X[11, 19, 12, 18], X[6, 13, 7, 14], X[15, 20, 16, 21], 
 
>   X[17, 11, 18, 10], X[19, 22, 20, 1], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 21]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, -5, 9, -6, -3, 7, 5, -8, 11, -9, 6, -10, 
 
>   8, -11, 10]
In[5]:=
DTCode[Knot[11, NonAlternating, 21]]
Out[5]=   
DTCode[4, 8, 12, 2, -14, -18, 6, -20, -10, -22, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 21]][t]
Out[6]=   
      -3   5    11             2    3
15 - t   + -- - -- - 11 t + 5 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 21]][z]
Out[7]=   
     4    6
1 - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[9, 27], Knot[11, NonAlternating, 4], Knot[11, NonAlternating, 21], 
 
>   Knot[11, NonAlternating, 172]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 21]], KnotSignature[Knot[11, NonAlternating, 21]]}
Out[9]=   
{49, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 21]][q]
Out[10]=   
     -3   3    5            2      3      4      5    6
8 - q   + -- - - - 8 q + 8 q  - 7 q  + 5 q  - 3 q  + q
           2   q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[9, 41], Knot[11, NonAlternating, 4], Knot[11, NonAlternating, 21]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 21]][q]
Out[12]=   
     -10    -6    -4   3     2    4      6    8      10    14    16    18
1 - q    + q   - q   + -- + q  + q  - 2 q  + q  - 2 q   + q   - q   + q
                        2
                       q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 21]][a, z]
Out[13]=   
                              2      2                   4      4    6
     -4   3     2      2   2 z    6 z     2  2      4   z    4 z    z
4 + a   - -- - a  + 5 z  + ---- - ---- - a  z  + 2 z  + -- - ---- - --
           2                 4      2                    4     2     2
          a                 a      a                    a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 21]][a, z]
Out[14]=   
                                                                2    2
     -4   3     2   2 z   5 z   5 z            3         2   2 z    z
4 + a   + -- + a  - --- - --- - --- - 3 a z - a  z - 10 z  + ---- - -- - 
           2         5     3     a                             6     4
          a         a     a                                   a     a
 
        2                3       3       3                               4
    10 z       2  2   8 z    16 z    12 z         3    3  3       4   3 z
>   ----- - 3 a  z  + ---- + ----- + ----- + 5 a z  + a  z  + 13 z  - ---- + 
      2                 5      3       a                                6
     a                 a      a                                        a
 
       4       4                 5       5      5                  6      6
    3 z    16 z       2  4   10 z    17 z    8 z       5      6   z    8 z
>   ---- + ----- + 3 a  z  - ----- - ----- - ---- - a z  - 6 z  + -- - ---- - 
      4      2                 5       3      a                    6     4
     a      a                 a       a                           a     a
 
        6      7      7    7                    8      8    9    9
    15 z    3 z    3 z    z       7      8   3 z    5 z    z    z
>   ----- + ---- + ---- + -- + a z  + 2 z  + ---- + ---- + -- + --
      2       5      3    a                    4      2     3   a
     a       a      a                         a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 21]], Vassiliev[3][Knot[11, NonAlternating, 21]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 21]][q, t]
Out[16]=   
5           1       2       1      3      2               3        3  2
- + 4 q + ----- + ----- + ----- + ---- + --- + 4 q t + 4 q  t + 4 q  t  + 
q          7  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t
 
       5  2      5  3      7  3      7  4      9  4    9  5      11  5    13  6
>   4 q  t  + 3 q  t  + 4 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n21
K11n20
K11n20
K11n22
K11n22