© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n183
K11n183
K11n185
K11n185
K11n184
Knotscape
This page is passe. Go here instead!

   The Knot K11n184

Visit K11n184's page at Knotilus!

Acknowledgement

K11n184 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,15,4,14 X10,6,11,5 X18,7,19,8 X2,10,3,9 X22,11,1,12 X20,14,21,13 X15,5,16,4 X12,18,13,17 X8,19,9,20 X16,22,17,21

Gauss Code: {1, -5, -2, 8, 3, -1, 4, -10, 5, -3, 6, -9, 7, 2, -8, -11, 9, -4, 10, -7, 11, -6}

DT (Dowker-Thistlethwaite) Code: 6 -14 10 18 2 22 20 -4 12 8 16

Alexander Polynomial: 2t-3 - 9t-2 + 20t-1 - 25 + 20t - 9t2 + 2t3

Conway Polynomial: 1 + 2z2 + 3z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {1084, K11a46, ...}

Determinant and Signature: {87, 2}

Jones Polynomial: - 2 + 7q - 10q2 + 14q3 - 15q4 + 14q5 - 12q6 + 8q7 - 4q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - 2 + 3q2 - q4 + 2q6 + 4q8 - 2q10 + 3q12 - 3q14 + q16 - 3q20 + 2q22 - 2q24 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - 4a-6 - 7a-6z2 - 3a-6z4 + 4a-4 + 11a-4z2 + 8a-4z4 + 2a-4z6 - 3a-2z2 - 2a-2z4

Kauffman Polynomial: a-10z2 - 2a-10z4 + a-10z6 - 2a-9z + 7a-9z3 - 10a-9z5 + 4a-9z7 + a-8 - a-8z2 + 6a-8z4 - 14a-8z6 + 6a-8z8 - 7a-7z + 24a-7z3 - 28a-7z5 + 4a-7z7 + 3a-7z9 + 4a-6 - 14a-6z2 + 29a-6z4 - 36a-6z6 + 14a-6z8 - 7a-5z + 25a-5z3 - 27a-5z5 + 6a-5z7 + 3a-5z9 + 4a-4 - 19a-4z2 + 29a-4z4 - 20a-4z6 + 8a-4z8 - 3a-3z + 11a-3z3 - 9a-3z5 + 6a-3z7 - 7a-2z2 + 8a-2z4 + a-2z6 - a-1z + 3a-1z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11184. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19         1
j = 17        3 
j = 15       51 
j = 13      73  
j = 11     75   
j = 9    87    
j = 7   67     
j = 5  48      
j = 3 36       
j = 1 5        
j = -12         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 184]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 184]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 15, 4, 14], X[10, 6, 11, 5], X[18, 7, 19, 8], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[20, 14, 21, 13], X[15, 5, 16, 4], 
 
>   X[12, 18, 13, 17], X[8, 19, 9, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 184]]
Out[4]=   
GaussCode[1, -5, -2, 8, 3, -1, 4, -10, 5, -3, 6, -9, 7, 2, -8, -11, 9, -4, 10, 
 
>   -7, 11, -6]
In[5]:=
DTCode[Knot[11, NonAlternating, 184]]
Out[5]=   
DTCode[6, -14, 10, 18, 2, 22, 20, -4, 12, 8, 16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 184]][t]
Out[6]=   
      2    9    20             2      3
-25 + -- - -- + -- + 20 t - 9 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, NonAlternating, 184]][z]
Out[7]=   
       2      4      6
1 + 2 z  + 3 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 84], Knot[11, Alternating, 46], Knot[11, NonAlternating, 184]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 184]], KnotSignature[Knot[11, NonAlternating, 184]]}
Out[9]=   
{87, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 184]][q]
Out[10]=   
               2       3       4       5       6      7      8    9
-2 + 7 q - 10 q  + 14 q  - 15 q  + 14 q  - 12 q  + 8 q  - 4 q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 184]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 184]][q]
Out[12]=   
        2    4      6      8      10      12      14    16      20      22
-2 + 3 q  - q  + 2 q  + 4 q  - 2 q   + 3 q   - 3 q   + q   - 3 q   + 2 q   - 
 
       24    28
>   2 q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 184]][a, z]
Out[13]=   
                 2      2       2      2      4      4      4      6
 -8   4    4    z    7 z    11 z    3 z    3 z    8 z    2 z    2 z
a   - -- + -- + -- - ---- + ----- - ---- - ---- + ---- - ---- + ----
       6    4    8     6      4       2      6      4      2      4
      a    a    a     a      a       a      a      a      a      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 184]][a, z]
Out[14]=   
                                             2     2       2       2      2
 -8   4    4    2 z   7 z   7 z   3 z   z   z     z    14 z    19 z    7 z
a   + -- + -- - --- - --- - --- - --- - - + --- - -- - ----- - ----- - ---- + 
       6    4    9     7     5     3    a    10    8     6       4       2
      a    a    a     a     a     a         a     a     a       a       a
 
       3       3       3       3      3      4      4       4       4      4
    7 z    24 z    25 z    11 z    3 z    2 z    6 z    29 z    29 z    8 z
>   ---- + ----- + ----- + ----- + ---- - ---- + ---- + ----- + ----- + ---- - 
      9      7       5       3      a      10      8      6       4       2
     a      a       a       a             a       a      a       a       a
 
        5       5       5      5    6        6       6       6    6      7
    10 z    28 z    27 z    9 z    z     14 z    36 z    20 z    z    4 z
>   ----- - ----- - ----- - ---- + --- - ----- - ----- - ----- + -- + ---- + 
      9       7       5       3     10     8       6       4      2     9
     a       a       a       a     a      a       a       a      a     a
 
       7      7      7      8       8      8      9      9
    4 z    6 z    6 z    6 z    14 z    8 z    3 z    3 z
>   ---- + ---- + ---- + ---- + ----- + ---- + ---- + ----
      7      5      3      8      6       4      7      5
     a      a      a      a      a       a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 184]], Vassiliev[3][Knot[11, NonAlternating, 184]]}
Out[15]=   
{2, 2}
In[16]:=
Kh[Knot[11, NonAlternating, 184]][q, t]
Out[16]=   
         3    2       3        5        5  2      7  2      7  3      9  3
5 q + 3 q  + --- + 6 q  t + 4 q  t + 8 q  t  + 6 q  t  + 7 q  t  + 8 q  t  + 
             q t
 
       9  4      11  4      11  5      13  5      13  6      15  6    15  7
>   7 q  t  + 7 q   t  + 5 q   t  + 7 q   t  + 3 q   t  + 5 q   t  + q   t  + 
 
       17  7    19  8
>   3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n184
K11n183
K11n183
K11n185
K11n185