© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n181
K11n181
K11n183
K11n183
K11n182
Knotscape
This page is passe. Go here instead!

   The Knot K11n182

Visit K11n182's page at Knotilus!

Acknowledgement

K11n182 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,12,4,13 X16,5,17,6 X18,8,19,7 X14,10,15,9 X11,4,12,5 X20,13,21,14 X22,16,1,15 X2,17,3,18 X8,20,9,19 X10,21,11,22

Gauss Code: {1, -9, -2, 6, 3, -1, 4, -10, 5, -11, -6, 2, 7, -5, 8, -3, 9, -4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 -12 16 18 14 -4 20 22 2 8 10

Alexander Polynomial: t-4 - 5t-3 + 11t-2 - 18t-1 + 23 - 18t + 11t2 - 5t3 + t4

Conway Polynomial: 1 - 3z2 + z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {93, 0}

Jones Polynomial: 3q-4 - 7q-3 + 11q-2 - 15q-1 + 16 - 15q + 13q2 - 8q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-16 + 3q-12 - 2q-10 + q-8 - q-6 - 4q-4 + 3q-2 - 4 + 4q2 - q4 + q6 + 3q8 - 2q10 + 2q12 - q14

HOMFLY-PT Polynomial: a-2 - 2a-2z2 - 3a-2z4 - a-2z6 + 1 + 4z2 + 8z4 + 5z6 + z8 - 3a2 - 6a2z2 - 4a2z4 - a2z6 + 2a4 + a4z2

Kauffman Polynomial: - a-5z3 + a-5z5 + 2a-4z2 - 6a-4z4 + 4a-4z6 - a-3z + 4a-3z3 - 11a-3z5 + 7a-3z7 - a-2 + 2a-2z2 - 9a-2z6 + 7a-2z8 - 2a-1z + 12a-1z3 - 19a-1z5 + 6a-1z7 + 3a-1z9 + 1 - 9z2 + 23z4 - 27z6 + 13z8 + 2az + 2az3 - 7az5 + 2az7 + 3az9 + 3a2 - 18a2z2 + 23a2z4 - 14a2z6 + 6a2z8 + 3a3z - 5a3z3 + 3a3z7 + 2a4 - 9a4z2 + 6a4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-3, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11182. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11         1
j = 9        3 
j = 7       51 
j = 5      83  
j = 3     75   
j = 1    98    
j = -1   78     
j = -3  48      
j = -5 37       
j = -7 4        
j = -93         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 182]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 182]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 12, 4, 13], X[16, 5, 17, 6], X[18, 8, 19, 7], 
 
>   X[14, 10, 15, 9], X[11, 4, 12, 5], X[20, 13, 21, 14], X[22, 16, 1, 15], 
 
>   X[2, 17, 3, 18], X[8, 20, 9, 19], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 182]]
Out[4]=   
GaussCode[1, -9, -2, 6, 3, -1, 4, -10, 5, -11, -6, 2, 7, -5, 8, -3, 9, -4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, NonAlternating, 182]]
Out[5]=   
DTCode[6, -12, 16, 18, 14, -4, 20, 22, 2, 8, 10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 182]][t]
Out[6]=   
      -4   5    11   18              2      3    4
23 + t   - -- + -- - -- - 18 t + 11 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, NonAlternating, 182]][z]
Out[7]=   
       2    4      6    8
1 - 3 z  + z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 182]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 182]], KnotSignature[Knot[11, NonAlternating, 182]]}
Out[9]=   
{93, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 182]][q]
Out[10]=   
     3    7    11   15              2      3      4    5
16 + -- - -- + -- - -- - 15 q + 13 q  - 8 q  + 4 q  - q
      4    3    2   q
     q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 182]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 182]][q]
Out[12]=   
      -16    3     2     -8    -6   4    3       2    4    6      8      10
-4 + q    + --- - --- + q   - q   - -- + -- + 4 q  - q  + q  + 3 q  - 2 q   + 
             12    10                4    2
            q     q                 q    q
 
       12    14
>   2 q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 182]][a, z]
Out[13]=   
                                  2                               4
     -2      2      4      2   2 z       2  2    4  2      4   3 z       2  4
1 + a   - 3 a  + 2 a  + 4 z  - ---- - 6 a  z  + a  z  + 8 z  - ---- - 4 a  z  + 
                                 2                               2
                                a                               a
 
            6
       6   z     2  6    8
>   5 z  - -- - a  z  + z
            2
           a
In[14]:=
Kauffman[Knot[11, NonAlternating, 182]][a, z]
Out[14]=   
                                                              2      2
     -2      2      4   z    2 z              3        2   2 z    2 z
1 - a   + 3 a  + 2 a  - -- - --- + 2 a z + 3 a  z - 9 z  + ---- + ---- - 
                         3    a                              4      2
                        a                                   a      a
 
                          3      3       3                                 4
        2  2      4  2   z    4 z    12 z         3      3  3       4   6 z
>   18 a  z  - 9 a  z  - -- + ---- + ----- + 2 a z  - 5 a  z  + 23 z  - ---- + 
                          5     3      a                                  4
                         a     a                                         a
 
                          5       5       5                       6      6
        2  4      4  4   z    11 z    19 z         5       6   4 z    9 z
>   23 a  z  + 6 a  z  + -- - ----- - ----- - 7 a z  - 27 z  + ---- - ---- - 
                          5     3       a                        4      2
                         a     a                                a      a
 
                  7      7                                 8                9
        2  6   7 z    6 z         7      3  7       8   7 z       2  8   3 z
>   14 a  z  + ---- + ---- + 2 a z  + 3 a  z  + 13 z  + ---- + 6 a  z  + ---- + 
                 3     a                                  2               a
                a                                        a
 
         9
>   3 a z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 182]], Vassiliev[3][Knot[11, NonAlternating, 182]]}
Out[15]=   
{-3, 2}
In[16]:=
Kh[Knot[11, NonAlternating, 182]][q, t]
Out[16]=   
8           3       4       3       7       4      8      7               3
- + 9 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 8 q t + 7 q  t + 
q          9  4    7  3    5  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t    q  t    q  t
 
       3  2      5  2      5  3      7  3    7  4      9  4    11  5
>   5 q  t  + 8 q  t  + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n182
K11n181
K11n181
K11n183
K11n183