© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n171
K11n171
K11n173
K11n173
K11n172
Knotscape
This page is passe. Go here instead!

   The Knot K11n172

Visit K11n172's page at Knotilus!

Acknowledgement

K11n172 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X5,16,6,17 X12,8,13,7 X20,10,21,9 X2,11,3,12 X18,13,19,14 X15,4,16,5 X22,17,1,18 X8,20,9,19 X14,21,15,22

Gauss Code: {1, -6, 2, 8, -3, -1, 4, -10, 5, -2, 6, -4, 7, -11, -8, 3, 9, -7, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 10 -16 12 20 2 18 -4 22 8 14

Alexander Polynomial: - t-3 + 5t-2 - 11t-1 + 15 - 11t + 5t2 - t3

Conway Polynomial: 1 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {927, K11n4, K11n21, ...}

Determinant and Signature: {49, 0}

Jones Polynomial: - q-7 + 3q-6 - 5q-5 + 7q-4 - 8q-3 + 8q-2 - 7q-1 + 6 - 3q + q2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-22 + q-18 - q-16 + 2q-14 + q-8 - 2q-6 + q-4 - q-2 + 1 + 2q2 - q4 + q6

HOMFLY-PT Polynomial: 2 + 2z2 + z4 - 3a2 - 6a2z2 - 4a2z4 - a2z6 + 3a4 + 5a4z2 + 2a4z4 - a6 - a6z2

Kauffman Polynomial: a-2z2 - a-1z + 3a-1z3 + 2 - 3z2 + 2z4 + z6 - 3az + 10az3 - 11az5 + 4az7 + 3a2 - 14a2z2 + 22a2z4 - 18a2z6 + 5a2z8 - 5a3z + 17a3z3 - 15a3z5 - a3z7 + 2a3z9 + 3a4 - 16a4z2 + 36a4z4 - 32a4z6 + 8a4z8 - 5a5z + 15a5z3 - 8a5z5 - 4a5z7 + 2a5z9 + a6 - 6a6z2 + 16a6z4 - 13a6z6 + 3a6z8 - 2a7z + 5a7z3 - 4a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11172. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 5         1
j = 3        2 
j = 1       41 
j = -1      43  
j = -3     43   
j = -5    44    
j = -7   34     
j = -9  24      
j = -11 13       
j = -13 2        
j = -151         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 172]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 172]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[5, 16, 6, 17], X[12, 8, 13, 7], 
 
>   X[20, 10, 21, 9], X[2, 11, 3, 12], X[18, 13, 19, 14], X[15, 4, 16, 5], 
 
>   X[22, 17, 1, 18], X[8, 20, 9, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 172]]
Out[4]=   
GaussCode[1, -6, 2, 8, -3, -1, 4, -10, 5, -2, 6, -4, 7, -11, -8, 3, 9, -7, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 172]]
Out[5]=   
DTCode[6, 10, -16, 12, 20, 2, 18, -4, 22, 8, 14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 172]][t]
Out[6]=   
      -3   5    11             2    3
15 - t   + -- - -- - 11 t + 5 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 172]][z]
Out[7]=   
     4    6
1 - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[9, 27], Knot[11, NonAlternating, 4], Knot[11, NonAlternating, 21], 
 
>   Knot[11, NonAlternating, 172]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 172]], KnotSignature[Knot[11, NonAlternating, 172]]}
Out[9]=   
{49, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 172]][q]
Out[10]=   
     -7   3    5    7    8    8    7          2
6 - q   + -- - -- + -- - -- + -- - - - 3 q + q
           6    5    4    3    2   q
          q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 172]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 172]][q]
Out[12]=   
     -22    -18    -16    2     -8   2     -4    -2      2    4    6
1 - q    + q    - q    + --- + q   - -- + q   - q   + 2 q  - q  + q
                          14          6
                         q           q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 172]][a, z]
Out[13]=   
       2      4    6      2      2  2      4  2    6  2    4      2  4
2 - 3 a  + 3 a  - a  + 2 z  - 6 a  z  + 5 a  z  - a  z  + z  - 4 a  z  + 
 
       4  4    2  6
>   2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 172]][a, z]
Out[14]=   
                                                                      2
       2      4    6   z              3        5        7        2   z
2 + 3 a  + 3 a  + a  - - - 3 a z - 5 a  z - 5 a  z - 2 a  z - 3 z  + -- - 
                       a                                              2
                                                                     a
 
                                       3
        2  2       4  2      6  2   3 z          3       3  3       5  3
>   14 a  z  - 16 a  z  - 6 a  z  + ---- + 10 a z  + 17 a  z  + 15 a  z  + 
                                     a
 
       7  3      4       2  4       4  4       6  4         5       3  5
>   5 a  z  + 2 z  + 22 a  z  + 36 a  z  + 16 a  z  - 11 a z  - 15 a  z  - 
 
       5  5      7  5    6       2  6       4  6       6  6        7    3  7
>   8 a  z  - 4 a  z  + z  - 18 a  z  - 32 a  z  - 13 a  z  + 4 a z  - a  z  - 
 
       5  7    7  7      2  8      4  8      6  8      3  9      5  9
>   4 a  z  + a  z  + 5 a  z  + 8 a  z  + 3 a  z  + 2 a  z  + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 172]], Vassiliev[3][Knot[11, NonAlternating, 172]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 172]][q, t]
Out[16]=   
3           1        2        1        3        2       4       3       4
- + 4 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q          15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
          q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      4       4       4      3      4             3      5  2
>   ----- + ----- + ----- + ---- + --- + q t + 2 q  t + q  t
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n172
K11n171
K11n171
K11n173
K11n173