© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n169
K11n169
K11n171
K11n171
K11n170
Knotscape
This page is passe. Go here instead!

   The Knot K11n170

Visit K11n170's page at Knotilus!

Acknowledgement

K11n170 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,5,17,6 X12,8,13,7 X18,9,19,10 X2,11,3,12 X13,22,14,1 X15,20,16,21 X4,17,5,18 X8,19,9,20 X21,14,22,15

Gauss Code: {1, -6, 2, -9, 3, -1, 4, -10, 5, -2, 6, -4, -7, 11, -8, -3, 9, -5, 10, 8, -11, 7}

DT (Dowker-Thistlethwaite) Code: 6 10 16 12 18 2 -22 -20 4 8 -14

Alexander Polynomial: - 3t-2 + 16t-1 - 25 + 16t - 3t2

Conway Polynomial: 1 + 4z2 - 3z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {63, -2}

Jones Polynomial: - 2q-8 + 4q-7 - 7q-6 + 10q-5 - 10q-4 + 11q-3 - 9q-2 + 6q-1 - 3 + q

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - 2q-26 - 2q-24 + 2q-22 - q-20 + q-18 + 3q-16 - q-14 + 2q-12 - q-10 + q-8 + q-6 - 2q-4 + 3q-2 - 1 - q2 + q4

HOMFLY-PT Polynomial: z2 + a2 + a2z2 - a2z4 - a4 - 2a4z2 - 2a4z4 + 3a6 + 4a6z2 - 2a8

Kauffman Polynomial: - z2 + z4 - 3az3 + 3az5 - a2 + 3a2z2 - 6a2z4 + 5a2z6 - a3z + 8a3z3 - 10a3z5 + 6a3z7 - a4 + 3a4z2 - 4a4z6 + 4a4z8 - a5z + 10a5z3 - 15a5z5 + 6a5z7 + a5z9 - 3a6 + 2a6z2 + 3a6z4 - 9a6z6 + 5a6z8 + 5a7z - 9a7z3 + a7z5 + a7z9 - 2a8 + 3a8z2 - 4a8z4 + a8z8 + 5a9z - 8a9z3 + 3a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, -9}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11170. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3         1
j = 1        2 
j = -1       41 
j = -3      63  
j = -5     53   
j = -7    56    
j = -9   55     
j = -11  25      
j = -13 25       
j = -15 2        
j = -172         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 170]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 170]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 5, 17, 6], X[12, 8, 13, 7], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[13, 22, 14, 1], X[15, 20, 16, 21], 
 
>   X[4, 17, 5, 18], X[8, 19, 9, 20], X[21, 14, 22, 15]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 170]]
Out[4]=   
GaussCode[1, -6, 2, -9, 3, -1, 4, -10, 5, -2, 6, -4, -7, 11, -8, -3, 9, -5, 10, 
 
>   8, -11, 7]
In[5]:=
DTCode[Knot[11, NonAlternating, 170]]
Out[5]=   
DTCode[6, 10, 16, 12, 18, 2, -22, -20, 4, 8, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 170]][t]
Out[6]=   
      3    16             2
-25 - -- + -- + 16 t - 3 t
       2   t
      t
In[7]:=
Conway[Knot[11, NonAlternating, 170]][z]
Out[7]=   
       2      4
1 + 4 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 170]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 170]], KnotSignature[Knot[11, NonAlternating, 170]]}
Out[9]=   
{63, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 170]][q]
Out[10]=   
     2    4    7    10   10   11   9    6
-3 - -- + -- - -- + -- - -- + -- - -- + - + q
      8    7    6    5    4    3    2   q
     q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 170]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 170]][q]
Out[12]=   
      2     2     2     -20    -18    3     -14    2     -10    -8    -6   2
-1 - --- - --- + --- - q    + q    + --- - q    + --- - q    + q   + q   - -- + 
      26    24    22                  16           12                       4
     q     q     q                   q            q                        q
 
    3     2    4
>   -- - q  + q
     2
    q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 170]][a, z]
Out[13]=   
 2    4      6      8    2    2  2      4  2      6  2    2  4      4  4
a  - a  + 3 a  - 2 a  + z  + a  z  - 2 a  z  + 4 a  z  - a  z  - 2 a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 170]][a, z]
Out[14]=   
  2    4      6      8    3      5        7        9      2      2  2
-a  - a  - 3 a  - 2 a  - a  z - a  z + 5 a  z + 5 a  z - z  + 3 a  z  + 
 
       4  2      6  2      8  2        3      3  3       5  3      7  3
>   3 a  z  + 2 a  z  + 3 a  z  - 3 a z  + 8 a  z  + 10 a  z  - 9 a  z  - 
 
       9  3    4      2  4      6  4      8  4        5       3  5       5  5
>   8 a  z  + z  - 6 a  z  + 3 a  z  - 4 a  z  + 3 a z  - 10 a  z  - 15 a  z  + 
 
     7  5      9  5      2  6      4  6      6  6      3  7      5  7
>   a  z  + 3 a  z  + 5 a  z  - 4 a  z  - 9 a  z  + 6 a  z  + 6 a  z  + 
 
       4  8      6  8    8  8    5  9    7  9
>   4 a  z  + 5 a  z  + a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 170]], Vassiliev[3][Knot[11, NonAlternating, 170]]}
Out[15]=   
{4, -9}
In[16]:=
Kh[Knot[11, NonAlternating, 170]][q, t]
Out[16]=   
3    4     2        2        2        5        2        5        5       5
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      5       6       5      3      6     t            3  2
>   ----- + ----- + ----- + ---- + ---- + - + 2 q t + q  t
     7  3    7  2    5  2    5      3     q
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n170
K11n169
K11n169
K11n171
K11n171