© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n16
K11n16
K11n18
K11n18
K11n17
Knotscape
This page is passe. Go here instead!

   The Knot K11n17

Visit K11n17's page at Knotilus!

Acknowledgement

K11n17 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X7,16,8,17 X2,9,3,10 X18,11,19,12 X20,13,21,14 X15,6,16,7 X22,17,1,18 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, 8, -4, -2, 5, -3, 6, -11, 7, -10, -8, 4, 9, -6, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 -16 2 18 20 -6 22 14 12

Alexander Polynomial: - 2t-2 + 12t-1 - 19 + 12t - 2t2

Conway Polynomial: 1 + 4z2 - 2z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {47, -2}

Jones Polynomial: - q-10 + 2q-9 - 4q-8 + 6q-7 - 7q-6 + 8q-5 - 7q-4 + 6q-3 - 4q-2 + 2q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-32 - q-30 + q-28 - q-26 + 2q-22 - q-20 + q-18 + q-12 - q-10 + 2q-8 - q-4 + 2q-2

HOMFLY-PT Polynomial: a2 + 2a2z2 - a4z4 - a6z4 + a8 + 2a8z2 - a10

Kauffman Polynomial: - a2 + 3a2z2 - a3z + 3a3z3 + a3z5 + 2a4z2 - 3a4z4 + 3a4z6 - 3a5z + 6a5z3 - 8a5z5 + 4a5z7 - a6z4 - 5a6z6 + 3a6z8 - 3a7z + 12a7z3 - 16a7z5 + 3a7z7 + a7z9 + a8 - 4a8z2 + 14a8z4 - 17a8z6 + 5a8z8 - 5a9z + 17a9z3 - 12a9z5 + a9z9 + a10 - 5a10z2 + 12a10z4 - 9a10z6 + 2a10z8 - 4a11z + 8a11z3 - 5a11z5 + a11z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, -10}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1117. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1         2
j = -3        31
j = -5       31 
j = -7      43  
j = -9     43   
j = -11    34    
j = -13   34     
j = -15  13      
j = -17 13       
j = -19 1        
j = -211         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 17]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 17]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[7, 16, 8, 17], 
 
>   X[2, 9, 3, 10], X[18, 11, 19, 12], X[20, 13, 21, 14], X[15, 6, 16, 7], 
 
>   X[22, 17, 1, 18], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 17]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, 8, -4, -2, 5, -3, 6, -11, 7, -10, -8, 4, 9, -6, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 17]]
Out[5]=   
DTCode[4, 8, 10, -16, 2, 18, 20, -6, 22, 14, 12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 17]][t]
Out[6]=   
      2    12             2
-19 - -- + -- + 12 t - 2 t
       2   t
      t
In[7]:=
Conway[Knot[11, NonAlternating, 17]][z]
Out[7]=   
       2      4
1 + 4 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 17]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 17]], KnotSignature[Knot[11, NonAlternating, 17]]}
Out[9]=   
{47, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 17]][q]
Out[10]=   
  -10   2    4    6    7    8    7    6    4    2
-q    + -- - -- + -- - -- + -- - -- + -- - -- + -
         9    8    7    6    5    4    3    2   q
        q    q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 17]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 17]][q]
Out[12]=   
  -32    -30    -28    -26    2     -20    -18    -12    -10   2     -4   2
-q    - q    + q    - q    + --- - q    + q    + q    - q    + -- - q   + --
                              22                                8          2
                             q                                 q          q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 17]][a, z]
Out[13]=   
 2    8    10      2  2      8  2    4  4    6  4
a  + a  - a   + 2 a  z  + 2 a  z  - a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 17]][a, z]
Out[14]=   
  2    8    10    3        5        7        9        11        2  2
-a  + a  + a   - a  z - 3 a  z - 3 a  z - 5 a  z - 4 a   z + 3 a  z  + 
 
       4  2      8  2      10  2      3  3      5  3       7  3       9  3
>   2 a  z  - 4 a  z  - 5 a   z  + 3 a  z  + 6 a  z  + 12 a  z  + 17 a  z  + 
 
       11  3      4  4    6  4       8  4       10  4    3  5      5  5
>   8 a   z  - 3 a  z  - a  z  + 14 a  z  + 12 a   z  + a  z  - 8 a  z  - 
 
        7  5       9  5      11  5      4  6      6  6       8  6      10  6
>   16 a  z  - 12 a  z  - 5 a   z  + 3 a  z  - 5 a  z  - 17 a  z  - 9 a   z  + 
 
       5  7      7  7    11  7      6  8      8  8      10  8    7  9    9  9
>   4 a  z  + 3 a  z  + a   z  + 3 a  z  + 5 a  z  + 2 a   z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 17]], Vassiliev[3][Knot[11, NonAlternating, 17]]}
Out[15]=   
{4, -10}
In[16]:=
Kh[Knot[11, NonAlternating, 17]][q, t]
Out[16]=   
 -3   2     1        1        1        3        1        3        3
q   + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
      q    21  9    19  8    17  8    17  7    15  7    15  6    13  6
          q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        3        4        4       3       4       3       3      1
>   ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     13  5    11  5    11  4    9  4    9  3    7  3    7  2    5  2    5
    q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     3
>   ----
     3
    q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n17
K11n16
K11n16
K11n18
K11n18