© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n165
K11n165
K11n167
K11n167
K11n166
Knotscape
This page is passe. Go here instead!

   The Knot K11n166

Visit K11n166's page at Knotilus!

Acknowledgement

K11n166 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X5,15,6,14 X18,7,19,8 X2,10,3,9 X20,11,21,12 X22,14,1,13 X15,5,16,4 X12,17,13,18 X8,19,9,20 X16,22,17,21

Gauss Code: {1, -5, 2, 8, -3, -1, 4, -10, 5, -2, 6, -9, 7, 3, -8, -11, 9, -4, 10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 10 -14 18 2 20 22 -4 12 8 16

Alexander Polynomial: - t-4 + 4t-3 - 8t-2 + 11t-1 - 11 + 11t - 8t2 + 4t3 - t4

Conway Polynomial: 1 - z2 - 4z4 - 4z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {59, 2}

Jones Polynomial: q-3 - 3q-2 + 6q-1 - 8 + 10q - 10q2 + 9q3 - 7q4 + 4q5 - q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11n124, ...}

A2 (sl(3)) Invariant: q-8 - q-6 + 2q-4 + 1 + q2 - 3q4 + 2q6 - 3q8 + 2q10 + 2q16 - q18 + q20 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 4a-4 + 8a-4z2 + 5a-4z4 + a-4z6 - 5a-2 - 13a-2z2 - 13a-2z4 - 6a-2z6 - a-2z8 + 3 + 5z2 + 4z4 + z6

Kauffman Polynomial: - a-7z + a-7z3 + a-6 - 3a-6z2 + 4a-6z4 - 3a-5z + 7a-5z3 - 3a-5z5 + 2a-5z7 + 4a-4 - 17a-4z2 + 26a-4z4 - 14a-4z6 + 4a-4z8 - 3a-3z + 7a-3z3 - 3a-3z5 - 2a-3z7 + 2a-3z9 + 5a-2 - 23a-2z2 + 35a-2z4 - 27a-2z6 + 8a-2z8 - 2a-1z + 7a-1z3 - 9a-1z5 - a-1z7 + 2a-1z9 + 3 - 7z2 + 10z4 - 12z6 + 4z8 - az + 6az3 - 9az5 + 3az7 + 2a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11166. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13         1
j = 11        3 
j = 9       41 
j = 7      53  
j = 5     54   
j = 3    55    
j = 1   46     
j = -1  24      
j = -3 14       
j = -5 2        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 166]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 166]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[5, 15, 6, 14], X[18, 7, 19, 8], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[22, 14, 1, 13], X[15, 5, 16, 4], 
 
>   X[12, 17, 13, 18], X[8, 19, 9, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 166]]
Out[4]=   
GaussCode[1, -5, 2, 8, -3, -1, 4, -10, 5, -2, 6, -9, 7, 3, -8, -11, 9, -4, 10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, NonAlternating, 166]]
Out[5]=   
DTCode[6, 10, -14, 18, 2, 20, 22, -4, 12, 8, 16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 166]][t]
Out[6]=   
       -4   4    8    11             2      3    4
-11 - t   + -- - -- + -- + 11 t - 8 t  + 4 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, NonAlternating, 166]][z]
Out[7]=   
     2      4      6    8
1 - z  - 4 z  - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 166]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 166]], KnotSignature[Knot[11, NonAlternating, 166]]}
Out[9]=   
{59, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 166]][q]
Out[10]=   
      -3   3    6              2      3      4      5    6
-8 + q   - -- + - + 10 q - 10 q  + 9 q  - 7 q  + 4 q  - q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 124], Knot[11, NonAlternating, 166]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 166]][q]
Out[12]=   
     -8    -6   2     2      4      6      8      10      16    18    20    22
1 + q   - q   + -- + q  - 3 q  + 2 q  - 3 q  + 2 q   + 2 q   - q   + q   - q
                 4
                q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 166]][a, z]
Out[13]=   
                            2      2       2             4       4         6
     -6   4    5       2   z    8 z    13 z       4   5 z    13 z     6   z
3 - a   + -- - -- + 5 z  - -- + ---- - ----- + 4 z  + ---- - ----- + z  + -- - 
           4    2           6     4      2              4      2           4
          a    a           a     a      a              a      a           a
 
       6    8
    6 z    z
>   ---- - --
      2     2
     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 166]][a, z]
Out[14]=   
                                                           2       2       2
     -6   4    5    z    3 z   3 z   2 z            2   3 z    17 z    23 z
3 + a   + -- + -- - -- - --- - --- - --- - a z - 7 z  - ---- - ----- - ----- + 
           4    2    7    5     3     a                   6      4       2
          a    a    a    a     a                         a      a       a
 
               3      3      3      3                       4       4       4
       2  2   z    7 z    7 z    7 z         3       4   4 z    26 z    35 z
>   2 a  z  + -- + ---- + ---- + ---- + 6 a z  + 10 z  + ---- + ----- + ----- - 
               7     5      3     a                        6      4       2
              a     a      a                              a      a       a
 
                 5      5      5                        6       6
       2  4   3 z    3 z    9 z         5       6   14 z    27 z     2  6
>   3 a  z  - ---- - ---- - ---- - 9 a z  - 12 z  - ----- - ----- + a  z  + 
                5      3     a                        4       2
               a      a                              a       a
 
       7      7    7                      8      8      9      9
    2 z    2 z    z         7      8   4 z    8 z    2 z    2 z
>   ---- - ---- - -- + 3 a z  + 4 z  + ---- + ---- + ---- + ----
      5      3    a                      4      2      3     a
     a      a                           a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 166]], Vassiliev[3][Knot[11, NonAlternating, 166]]}
Out[15]=   
{-1, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 166]][q, t]
Out[16]=   
         3     1       2       1       4      2      4    4 q      3
6 q + 5 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 5 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3    9  4      11  4    13  5
>   5 q  t + 4 q  t  + 5 q  t  + 3 q  t  + 4 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n166
K11n165
K11n165
K11n167
K11n167