© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n163
K11n163
K11n165
K11n165
K11n164
Knotscape
This page is passe. Go here instead!

   The Knot K11n164

Visit K11n164's page at Knotilus!

Acknowledgement

K11n164 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,11,4,10 X14,5,15,6 X16,8,17,7 X9,21,10,20 X11,5,12,4 X13,19,14,18 X2,15,3,16 X22,18,1,17 X19,13,20,12 X21,9,22,8

Gauss Code: {1, -8, -2, 6, 3, -1, 4, 11, -5, 2, -6, 10, -7, -3, 8, -4, 9, 7, -10, 5, -11, -9}

DT (Dowker-Thistlethwaite) Code: 6 -10 14 16 -20 -4 -18 2 22 -12 -8

Alexander Polynomial: - t-3 + 5t-2 - 10t-1 + 13 - 10t + 5t2 - t3

Conway Polynomial: 1 + z2 - z4 - z6

Other knots with the same Alexander/Conway Polynomial: {818, 924, K11n85, ...}

Determinant and Signature: {45, 4}

Jones Polynomial: 1 - 3q + 6q2 - 6q3 + 8q4 - 8q5 + 6q6 - 5q7 + 2q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 - q2 + q4 + q6 + 4q10 + 2q14 - 2q16 - 3q18 - q20 - 2q22 + 2q24 + q26

HOMFLY-PT Polynomial: a-8 - 3a-6 + a-6z4 + 2a-4 - a-4z2 - 3a-4z4 - a-4z6 + a-2 + 2a-2z2 + a-2z4

Kauffman Polynomial: 2a-10z2 - 3a-9z + 4a-9z3 + a-9z5 + a-8 + 4a-8z4 - 2a-8z6 + a-8z8 - 7a-7z + 8a-7z3 - 2a-7z5 - a-7z7 + a-7z9 + 3a-6 - 3a-6z2 + 6a-6z4 - 10a-6z6 + 4a-6z8 - 4a-5z + 9a-5z3 - 12a-5z5 + 2a-5z7 + a-5z9 + 2a-4 + 2a-4z2 - a-4z4 - 7a-4z6 + 3a-4z8 + 5a-3z3 - 9a-3z5 + 3a-3z7 - a-2 + 3a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11164. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 17        2
j = 15       3 
j = 13      32 
j = 11     53  
j = 9    33   
j = 7   35    
j = 5  33     
j = 3 14      
j = 1 2       
j = -11        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 164]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 164]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 11, 4, 10], X[14, 5, 15, 6], X[16, 8, 17, 7], 
 
>   X[9, 21, 10, 20], X[11, 5, 12, 4], X[13, 19, 14, 18], X[2, 15, 3, 16], 
 
>   X[22, 18, 1, 17], X[19, 13, 20, 12], X[21, 9, 22, 8]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 164]]
Out[4]=   
GaussCode[1, -8, -2, 6, 3, -1, 4, 11, -5, 2, -6, 10, -7, -3, 8, -4, 9, 7, -10, 
 
>   5, -11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 164]]
Out[5]=   
DTCode[6, -10, 14, 16, -20, -4, -18, 2, 22, -12, -8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 164]][t]
Out[6]=   
      -3   5    10             2    3
13 - t   + -- - -- - 10 t + 5 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 164]][z]
Out[7]=   
     2    4    6
1 + z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
 
>   Knot[11, NonAlternating, 164]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 164]], KnotSignature[Knot[11, NonAlternating, 164]]}
Out[9]=   
{45, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 164]][q]
Out[10]=   
             2      3      4      5      6      7      8
1 - 3 q + 6 q  - 6 q  + 8 q  - 8 q  + 6 q  - 5 q  + 2 q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 164]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 164]][q]
Out[12]=   
     2    4    6      10      14      16      18    20      22      24    26
1 - q  + q  + q  + 4 q   + 2 q   - 2 q   - 3 q   - q   - 2 q   + 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 164]][a, z]
Out[13]=   
                       2      2    4      4    4    6
 -8   3    2     -2   z    2 z    z    3 z    z    z
a   - -- + -- + a   - -- + ---- + -- - ---- + -- - --
       6    4          4     2     6     4     2    4
      a    a          a     a     a     a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 164]][a, z]
Out[14]=   
                                           2      2      2      2      3
 -8   3    2     -2   3 z   7 z   4 z   2 z    3 z    2 z    3 z    4 z
a   + -- + -- - a   - --- - --- - --- + ---- - ---- + ---- + ---- + ---- + 
       6    4          9     7     5     10      6      4      2      9
      a    a          a     a     a     a       a      a      a      a
 
       3      3      3      4      4    4      4    5      5       5      5
    8 z    9 z    5 z    4 z    6 z    z    3 z    z    2 z    12 z    9 z
>   ---- + ---- + ---- + ---- + ---- - -- - ---- + -- - ---- - ----- - ---- - 
      7      5      3      8      6     4     2     9     7      5       3
     a      a      a      a      a     a     a     a     a      a       a
 
       6       6      6    6    7      7      7    8      8      8    9    9
    2 z    10 z    7 z    z    z    2 z    3 z    z    4 z    3 z    z    z
>   ---- - ----- - ---- + -- - -- + ---- + ---- + -- + ---- + ---- + -- + --
      8      6       4     2    7     5      3     8     6      4     7    5
     a      a       a     a    a     a      a     a     a      a     a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 164]], Vassiliev[3][Knot[11, NonAlternating, 164]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 164]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7        7  2      9  2      9  3
4 q  + 3 q  + ---- + --- + -- + 3 q  t + 3 q  t + 5 q  t  + 3 q  t  + 3 q  t  + 
                 2    t    t
              q t
 
       11  3      11  4      13  4      13  5      15  5      17  6
>   5 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 3 q   t  + 2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n164
K11n163
K11n163
K11n165
K11n165