© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n160
K11n160
K11n162
K11n162
K11n161
Knotscape
This page is passe. Go here instead!

   The Knot K11n161

Visit K11n161's page at Knotilus!

Acknowledgement

K11n161 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X12,6,13,5 X20,8,21,7 X18,10,19,9 X16,11,17,12 X13,1,14,22 X4,16,5,15 X2,17,3,18 X8,20,9,19 X21,15,22,14

Gauss Code: {1, -9, 2, -8, 3, -1, 4, -10, 5, -2, 6, -3, -7, 11, 8, -6, 9, -5, 10, -4, -11, 7}

DT (Dowker-Thistlethwaite) Code: 6 10 12 20 18 16 -22 4 2 8 -14

Alexander Polynomial: 2t-3 - 8t-2 + 14t-1 - 15 + 14t - 8t2 + 2t3

Conway Polynomial: 1 + 4z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {10108, ...}

Determinant and Signature: {63, 2}

Jones Polynomial: - q-2 + 3q-1 - 5 + 9q - 10q2 + 11q3 - 10q4 + 7q5 - 5q6 + 2q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-6 + q-4 + 3q2 - q4 + 3q6 + q12 - 3q14 + q16 - 2q18 - q20 + q22 + q26

HOMFLY-PT Polynomial: a-8 - 2a-6 - 3a-6z2 - a-6z4 + 2a-4z2 + 3a-4z4 + a-4z6 + 2a-2 + 3a-2z2 + 3a-2z4 + a-2z6 - 2z2 - z4

Kauffman Polynomial: a-8 - 5a-8z2 + 3a-8z4 + 4a-7z - 9a-7z3 + 3a-7z5 + a-7z7 + 2a-6 - 15a-6z2 + 18a-6z4 - 9a-6z6 + 3a-6z8 + 8a-5z - 17a-5z3 + 14a-5z5 - 5a-5z7 + 2a-5z9 - 14a-4z2 + 30a-4z4 - 21a-4z6 + 7a-4z8 + 4a-3z - 3a-3z3 + 2a-3z5 - 2a-3z7 + 2a-3z9 - 2a-2 - a-2z2 + 8a-2z4 - 9a-2z6 + 4a-2z8 + 3a-1z3 - 8a-1z5 + 4a-1z7 + 3z2 - 7z4 + 3z6 - 2az3 + az5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11161. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15         2
j = 13        3 
j = 11       42 
j = 9      63  
j = 7     54   
j = 5    56    
j = 3   45     
j = 1  26      
j = -1 13       
j = -3 2        
j = -51         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 161]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 161]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], 
 
>   X[18, 10, 19, 9], X[16, 11, 17, 12], X[13, 1, 14, 22], X[4, 16, 5, 15], 
 
>   X[2, 17, 3, 18], X[8, 20, 9, 19], X[21, 15, 22, 14]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 161]]
Out[4]=   
GaussCode[1, -9, 2, -8, 3, -1, 4, -10, 5, -2, 6, -3, -7, 11, 8, -6, 9, -5, 10, 
 
>   -4, -11, 7]
In[5]:=
DTCode[Knot[11, NonAlternating, 161]]
Out[5]=   
DTCode[6, 10, 12, 20, 18, 16, -22, 4, 2, 8, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 161]][t]
Out[6]=   
      2    8    14             2      3
-15 + -- - -- + -- + 14 t - 8 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, NonAlternating, 161]][z]
Out[7]=   
       4      6
1 + 4 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 108], Knot[11, NonAlternating, 161]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 161]], KnotSignature[Knot[11, NonAlternating, 161]]}
Out[9]=   
{63, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 161]][q]
Out[10]=   
      -2   3             2       3       4      5      6      7
-5 - q   + - + 9 q - 10 q  + 11 q  - 10 q  + 7 q  - 5 q  + 2 q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 161]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 161]][q]
Out[12]=   
  -6    -4      2    4      6    12      14    16      18    20    22    26
-q   + q   + 3 q  - q  + 3 q  + q   - 3 q   + q   - 2 q   - q   + q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 161]][a, z]
Out[13]=   
                          2      2      2         4      4      4    6    6
 -8   2    2       2   3 z    2 z    3 z     4   z    3 z    3 z    z    z
a   - -- + -- - 2 z  - ---- + ---- + ---- - z  - -- + ---- + ---- + -- + --
       6    2            6      4      2          6     4      2     4    2
      a    a            a      a      a          a     a      a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 161]][a, z]
Out[14]=   
                                            2       2       2    2      3
 -8   2    2    4 z   8 z   4 z      2   5 z    15 z    14 z    z    9 z
a   + -- - -- + --- + --- + --- + 3 z  - ---- - ----- - ----- - -- - ---- - 
       6    2    7     5     3             8      6       4      2     7
      a    a    a     a     a             a      a       a      a     a
 
        3      3      3                      4       4       4      4      5
    17 z    3 z    3 z         3      4   3 z    18 z    30 z    8 z    3 z
>   ----- - ---- + ---- - 2 a z  - 7 z  + ---- + ----- + ----- + ---- + ---- + 
      5       3     a                       8      6       4       2      7
     a       a                             a      a       a       a      a
 
        5      5      5                    6       6      6    7      7
    14 z    2 z    8 z       5      6   9 z    21 z    9 z    z    5 z
>   ----- + ---- - ---- + a z  + 3 z  - ---- - ----- - ---- + -- - ---- - 
      5       3     a                     6      4       2     7     5
     a       a                           a      a       a     a     a
 
       7      7      8      8      8      9      9
    2 z    4 z    3 z    7 z    4 z    2 z    2 z
>   ---- + ---- + ---- + ---- + ---- + ---- + ----
      3     a       6      4      2      5      3
     a             a      a      a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 161]], Vassiliev[3][Knot[11, NonAlternating, 161]]}
Out[15]=   
{0, -2}
In[16]:=
Kh[Knot[11, NonAlternating, 161]][q, t]
Out[16]=   
         3     1       2      1      3    2 q      3        5        5  2
6 q + 4 q  + ----- + ----- + ---- + --- + --- + 5 q  t + 5 q  t + 6 q  t  + 
              5  3    3  2      2   q t    t
             q  t    q  t    q t
 
       7  2      7  3      9  3      9  4      11  4      11  5      13  5
>   5 q  t  + 4 q  t  + 6 q  t  + 3 q  t  + 4 q   t  + 2 q   t  + 3 q   t  + 
 
       15  6
>   2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n161
K11n160
K11n160
K11n162
K11n162