© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n158
K11n158
K11n160
K11n160
K11n159
Knotscape
This page is passe. Go here instead!

   The Knot K11n159

Visit K11n159's page at Knotilus!

Acknowledgement

K11n159 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X12,6,13,5 X7,18,8,19 X9,20,10,21 X16,11,17,12 X22,13,1,14 X4,16,5,15 X2,17,3,18 X19,8,20,9 X14,21,15,22

Gauss Code: {1, -9, 2, -8, 3, -1, -4, 10, -5, -2, 6, -3, 7, -11, 8, -6, 9, 4, -10, 5, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 10 12 -18 -20 16 22 4 2 -8 14

Alexander Polynomial: t-3 - 6t-2 + 17t-1 - 23 + 17t - 6t2 + t3

Conway Polynomial: 1 + 2z2 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {71, -2}

Jones Polynomial: q-9 - 4q-8 + 7q-7 - 10q-6 + 12q-5 - 12q-4 + 11q-3 - 8q-2 + 5q-1 - 1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 - q-26 - 2q-24 + 2q-22 - 2q-20 + q-18 + q-16 - 2q-14 + 2q-12 - 2q-10 + 3q-8 + q-6 - q-4 + 3q-2 - 1

HOMFLY-PT Polynomial: a2 - a2z4 + a4 + 4a4z2 + 3a4z4 + a4z6 - a6 - 3a6z2 - 2a6z4 + a8z2

Kauffman Polynomial: az3 - a2 - a2z2 + 5a2z4 + a3z3 + a3z5 + 2a3z7 + a4 - 6a4z2 + 12a4z4 - 8a4z6 + 4a4z8 - 2a5z + 6a5z3 - 9a5z5 + 2a5z7 + 2a5z9 + a6 - 5a6z2 + 13a6z4 - 21a6z6 + 9a6z8 - 2a7z + 13a7z3 - 21a7z5 + 4a7z7 + 2a7z9 + a8z2 + 4a8z4 - 12a8z6 + 5a8z8 + 7a9z3 - 11a9z5 + 4a9z7 + a10z2 - 2a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11159. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 1         1
j = -1        4 
j = -3       52 
j = -5      63  
j = -7     65   
j = -9    66    
j = -11   46     
j = -13  36      
j = -15 14       
j = -17 3        
j = -191         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 159]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 159]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[7, 18, 8, 19], 
 
>   X[9, 20, 10, 21], X[16, 11, 17, 12], X[22, 13, 1, 14], X[4, 16, 5, 15], 
 
>   X[2, 17, 3, 18], X[19, 8, 20, 9], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 159]]
Out[4]=   
GaussCode[1, -9, 2, -8, 3, -1, -4, 10, -5, -2, 6, -3, 7, -11, 8, -6, 9, 4, -10, 
 
>   5, 11, -7]
In[5]:=
DTCode[Knot[11, NonAlternating, 159]]
Out[5]=   
DTCode[6, 10, 12, -18, -20, 16, 22, 4, 2, -8, 14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 159]][t]
Out[6]=   
       -3   6    17             2    3
-23 + t   - -- + -- + 17 t - 6 t  + t
             2   t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 159]][z]
Out[7]=   
       2    6
1 + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 159]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 159]], KnotSignature[Knot[11, NonAlternating, 159]]}
Out[9]=   
{71, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 159]][q]
Out[10]=   
      -9   4    7    10   12   12   11   8    5
-1 + q   - -- + -- - -- + -- - -- + -- - -- + -
            8    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 159]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 159]][q]
Out[12]=   
      -28    -26    2     2     2     -18    -16    2     2     2    3     -6
-1 + q    - q    - --- + --- - --- + q    + q    - --- + --- - --- + -- + q   - 
                    24    22    20                  14    12    10    8
                   q     q     q                   q     q     q     q
 
     -4   3
>   q   + --
           2
          q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 159]][a, z]
Out[13]=   
 2    4    6      4  2      6  2    8  2    2  4      4  4      6  4    4  6
a  + a  - a  + 4 a  z  - 3 a  z  + a  z  - a  z  + 3 a  z  - 2 a  z  + a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 159]][a, z]
Out[14]=   
  2    4    6      5        7      2  2      4  2      6  2    8  2    10  2
-a  + a  + a  - 2 a  z - 2 a  z - a  z  - 6 a  z  - 5 a  z  + a  z  + a   z  + 
 
       3    3  3      5  3       7  3      9  3      2  4       4  4
>   a z  + a  z  + 6 a  z  + 13 a  z  + 7 a  z  + 5 a  z  + 12 a  z  + 
 
        6  4      8  4      10  4    3  5      5  5       7  5       9  5
>   13 a  z  + 4 a  z  - 2 a   z  + a  z  - 9 a  z  - 21 a  z  - 11 a  z  - 
 
       4  6       6  6       8  6    10  6      3  7      5  7      7  7
>   8 a  z  - 21 a  z  - 12 a  z  + a   z  + 2 a  z  + 2 a  z  + 4 a  z  + 
 
       9  7      4  8      6  8      8  8      5  9      7  9
>   4 a  z  + 4 a  z  + 9 a  z  + 5 a  z  + 2 a  z  + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 159]], Vassiliev[3][Knot[11, NonAlternating, 159]]}
Out[15]=   
{2, -3}
In[16]:=
Kh[Knot[11, NonAlternating, 159]][q, t]
Out[16]=   
2    4     1        3        1        4        3        6        4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      6        6       6       6       5       6      3      5
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + q t
     11  4    9  4    9  3    7  3    7  2    5  2    5      3
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n159
K11n158
K11n158
K11n160
K11n160