© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n149
K11n149
K11n151
K11n151
K11n150
Knotscape
This page is passe. Go here instead!

   The Knot K11n150

Visit K11n150's page at Knotilus!

Acknowledgement

K11n150 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X10,6,11,5 X18,8,19,7 X16,9,17,10 X11,1,12,22 X13,21,14,20 X4,16,5,15 X2,17,3,18 X19,15,20,14 X21,13,22,12

Gauss Code: {1, -9, 2, -8, 3, -1, 4, -2, 5, -3, -6, 11, -7, 10, 8, -5, 9, -4, -10, 7, -11, 6}

DT (Dowker-Thistlethwaite) Code: 6 8 10 18 16 -22 -20 4 2 -14 -12

Alexander Polynomial: 2t-3 - 9t-2 + 17t-1 - 19 + 17t - 9t2 + 2t3

Conway Polynomial: 1 - z2 + 3z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a258, ...}

Determinant and Signature: {75, 2}

Jones Polynomial: - q-2 + 4q-1 - 7 + 11q - 12q2 + 13q3 - 12q4 + 8q5 - 5q6 + 2q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11n66, ...}

A2 (sl(3)) Invariant: - q-6 + 2q-4 + 3q2 - 2q4 + 3q6 - q8 + q12 - 3q14 + 2q16 - 2q18 - q20 + q22 + q26

HOMFLY-PT Polynomial: a-8 - 2a-6 - 3a-6z2 - a-6z4 + a-4 + 3a-4z2 + 3a-4z4 + a-4z6 + 2a-2z4 + a-2z6 + 1 - z2 - z4

Kauffman Polynomial: a-8 - 5a-8z2 + 3a-8z4 + 4a-7z - 7a-7z3 + 3a-7z5 + a-7z7 + 2a-6 - 12a-6z2 + 15a-6z4 - 7a-6z6 + 3a-6z8 + 7a-5z - 12a-5z3 + 8a-5z5 - 2a-5z7 + 2a-5z9 + a-4 - 10a-4z2 + 19a-4z4 - 17a-4z6 + 8a-4z8 + 3a-3z - 2a-3z3 - 6a-3z5 + 3a-3z7 + 2a-3z9 - a-2z2 - 6a-2z6 + 5a-2z8 + 2a-1z3 - 10a-1z5 + 6a-1z7 + 1 + 2z2 - 7z4 + 4z6 - az3 + az5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11150. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15         2
j = 13        3 
j = 11       52 
j = 9      73  
j = 7     65   
j = 5    67    
j = 3   56     
j = 1  37      
j = -1 14       
j = -3 3        
j = -51         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 150]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 150]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[18, 8, 19, 7], 
 
>   X[16, 9, 17, 10], X[11, 1, 12, 22], X[13, 21, 14, 20], X[4, 16, 5, 15], 
 
>   X[2, 17, 3, 18], X[19, 15, 20, 14], X[21, 13, 22, 12]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 150]]
Out[4]=   
GaussCode[1, -9, 2, -8, 3, -1, 4, -2, 5, -3, -6, 11, -7, 10, 8, -5, 9, -4, -10, 
 
>   7, -11, 6]
In[5]:=
DTCode[Knot[11, NonAlternating, 150]]
Out[5]=   
DTCode[6, 8, 10, 18, 16, -22, -20, 4, 2, -14, -12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 150]][t]
Out[6]=   
      2    9    17             2      3
-19 + -- - -- + -- + 17 t - 9 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, NonAlternating, 150]][z]
Out[7]=   
     2      4      6
1 - z  + 3 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 258], Knot[11, NonAlternating, 150]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 150]], KnotSignature[Knot[11, NonAlternating, 150]]}
Out[9]=   
{75, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 150]][q]
Out[10]=   
      -2   4              2       3       4      5      6      7
-7 - q   + - + 11 q - 12 q  + 13 q  - 12 q  + 8 q  - 5 q  + 2 q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 66], Knot[11, NonAlternating, 150]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 150]][q]
Out[12]=   
  -6   2       2      4      6    8    12      14      16      18    20    22
-q   + -- + 3 q  - 2 q  + 3 q  - q  + q   - 3 q   + 2 q   - 2 q   - q   + q   + 
        4
       q
 
     26
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 150]][a, z]
Out[13]=   
                             2      2         4      4      4    6    6
     -8   2     -4    2   3 z    3 z     4   z    3 z    2 z    z    z
1 + a   - -- + a   - z  - ---- + ---- - z  - -- + ---- + ---- + -- + --
           6                6      4          6     4      2     4    2
          a                a      a          a     a      a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 150]][a, z]
Out[14]=   
                                                 2       2       2    2
     -8   2     -4   4 z   7 z   3 z      2   5 z    12 z    10 z    z
1 + a   + -- + a   + --- + --- + --- + 2 z  - ---- - ----- - ----- - -- - 
           6          7     5     3             8      6       4      2
          a          a     a     a             a      a       a      a
 
       3       3      3      3                    4       4       4      5
    7 z    12 z    2 z    2 z       3      4   3 z    15 z    19 z    3 z
>   ---- - ----- - ---- + ---- - a z  - 7 z  + ---- + ----- + ----- + ---- + 
      7      5       3     a                     8      6       4       7
     a      a       a                           a      a       a       a
 
       5      5       5                    6       6      6    7      7
    8 z    6 z    10 z       5      6   7 z    17 z    6 z    z    2 z
>   ---- - ---- - ----- + a z  + 4 z  - ---- - ----- - ---- + -- - ---- + 
      5      3      a                     6      4       2     7     5
     a      a                            a      a       a     a     a
 
       7      7      8      8      8      9      9
    3 z    6 z    3 z    8 z    5 z    2 z    2 z
>   ---- + ---- + ---- + ---- + ---- + ---- + ----
      3     a       6      4      2      5      3
     a             a      a      a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 150]], Vassiliev[3][Knot[11, NonAlternating, 150]]}
Out[15]=   
{-1, -3}
In[16]:=
Kh[Knot[11, NonAlternating, 150]][q, t]
Out[16]=   
         3     1       3      1      4    3 q      3        5        5  2
7 q + 5 q  + ----- + ----- + ---- + --- + --- + 6 q  t + 6 q  t + 7 q  t  + 
              5  3    3  2      2   q t    t
             q  t    q  t    q t
 
       7  2      7  3      9  3      9  4      11  4      11  5      13  5
>   6 q  t  + 5 q  t  + 7 q  t  + 3 q  t  + 5 q   t  + 2 q   t  + 3 q   t  + 
 
       15  6
>   2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n150
K11n149
K11n149
K11n151
K11n151