© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n147
K11n147
K11n149
K11n149
K11n148
Knotscape
This page is passe. Go here instead!

   The Knot K11n148

Visit K11n148's page at Knotilus!

Acknowledgement

K11n148 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X5,19,6,18 X7,20,8,21 X9,1,10,22 X11,6,12,7 X2,14,3,13 X15,9,16,8 X17,10,18,11 X19,13,20,12 X21,16,22,17

Gauss Code: {1, -7, 2, -1, -3, 6, -4, 8, -5, 9, -6, 10, 7, -2, -8, 11, -9, 3, -10, 4, -11, 5}

DT (Dowker-Thistlethwaite) Code: 4 14 -18 -20 -22 -6 2 -8 -10 -12 -16

Alexander Polynomial: - t-4 + 5t-3 - 10t-2 + 14t-1 - 15 + 14t - 10t2 + 5t3 - t4

Conway Polynomial: 1 + 3z2 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a223, ...}

Determinant and Signature: {75, 2}

Jones Polynomial: q-3 - 4q-2 + 7q-1 - 10 + 13q - 12q2 + 12q3 - 9q4 + 5q5 - 2q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11n168, ...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + q-4 - 2q-2 + 2q2 - q4 + 6q6 - q8 + 3q10 - q12 - 2q14 + q16 - 2q18 + q20 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 4a-4z2 + 4a-4z4 + a-4z6 + 3a-2 - a-2z2 - 7a-2z4 - 5a-2z6 - a-2z8 - 1 + z2 + 3z4 + z6

Kauffman Polynomial: - 3a-7z + 3a-7z3 + a-6 - 4a-6z2 + 4a-6z4 + a-6z6 - 4a-5z + 9a-5z3 - 6a-5z5 + 4a-5z7 - 8a-4z2 + 21a-4z4 - 16a-4z6 + 6a-4z8 - 2a-3z + 12a-3z3 - 10a-3z5 - a-3z7 + 3a-3z9 - 3a-2 - 8a-2z2 + 33a-2z4 - 36a-2z6 + 12a-2z8 - a-1z + 12a-1z3 - 15a-1z5 - a-1z7 + 3a-1z9 - 1 - 4z2 + 14z4 - 18z6 + 6z8 + 6az3 - 11az5 + 4az7 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11148. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13         2
j = 11        3 
j = 9       62 
j = 7      63  
j = 5     66   
j = 3    76    
j = 1   47     
j = -1  36      
j = -3 14       
j = -5 3        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 148]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 148]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[5, 19, 6, 18], X[7, 20, 8, 21], 
 
>   X[9, 1, 10, 22], X[11, 6, 12, 7], X[2, 14, 3, 13], X[15, 9, 16, 8], 
 
>   X[17, 10, 18, 11], X[19, 13, 20, 12], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 148]]
Out[4]=   
GaussCode[1, -7, 2, -1, -3, 6, -4, 8, -5, 9, -6, 10, 7, -2, -8, 11, -9, 3, -10, 
 
>   4, -11, 5]
In[5]:=
DTCode[Knot[11, NonAlternating, 148]]
Out[5]=   
DTCode[4, 14, -18, -20, -22, -6, 2, -8, -10, -12, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 148]][t]
Out[6]=   
       -4   5    10   14              2      3    4
-15 - t   + -- - -- + -- + 14 t - 10 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, NonAlternating, 148]][z]
Out[7]=   
       2      6    8
1 + 3 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 223], Knot[11, NonAlternating, 148]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 148]], KnotSignature[Knot[11, NonAlternating, 148]]}
Out[9]=   
{75, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 148]][q]
Out[10]=   
       -3   4    7              2       3      4      5      6
-10 + q   - -- + - + 13 q - 12 q  + 12 q  - 9 q  + 5 q  - 2 q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 148], Knot[11, NonAlternating, 168]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 148]][q]
Out[12]=   
 -8   2     -4   2       2    4      6    8      10    12      14    16
q   - -- + q   - -- + 2 q  - q  + 6 q  - q  + 3 q   - q   - 2 q   + q   - 
       6          2
      q          q
 
       18    20    22
>   2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 148]][a, z]
Out[13]=   
                      2      2    2             4      4         6      6    8
      -6   3     2   z    4 z    z       4   4 z    7 z     6   z    5 z    z
-1 - a   + -- + z  - -- + ---- - -- + 3 z  + ---- - ---- + z  + -- - ---- - --
            2         6     4     2            4      2          4     2     2
           a         a     a     a            a      a          a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 148]][a, z]
Out[14]=   
                                                2      2      2      3      3
      -6   3    3 z   4 z   2 z   z      2   4 z    8 z    8 z    3 z    9 z
-1 + a   - -- - --- - --- - --- - - - 4 z  - ---- - ---- - ---- + ---- + ---- + 
            2    7     5     3    a            6      4      2      7      5
           a    a     a     a                 a      a      a      a      a
 
        3       3                       4       4       4                5
    12 z    12 z         3       4   4 z    21 z    33 z       2  4   6 z
>   ----- + ----- + 6 a z  + 14 z  + ---- + ----- + ----- - 2 a  z  - ---- - 
      3       a                        6      4       2                 5
     a                                a      a       a                 a
 
        5       5                      6       6       6              7    7
    10 z    15 z          5       6   z    16 z    36 z     2  6   4 z    z
>   ----- - ----- - 11 a z  - 18 z  + -- - ----- - ----- + a  z  + ---- - -- - 
      3       a                        6     4       2               5     3
     a                                a     a       a               a     a
 
     7                      8       8      9      9
    z         7      8   6 z    12 z    3 z    3 z
>   -- + 4 a z  + 6 z  + ---- + ----- + ---- + ----
    a                      4      2       3     a
                          a      a       a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 148]], Vassiliev[3][Knot[11, NonAlternating, 148]]}
Out[15]=   
{3, 4}
In[16]:=
Kh[Knot[11, NonAlternating, 148]][q, t]
Out[16]=   
         3     1       3       1       4      3      6    4 q      3
7 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 6 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   6 q  t + 6 q  t  + 6 q  t  + 3 q  t  + 6 q  t  + 2 q  t  + 3 q   t  + 
 
       13  5
>   2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n148
K11n147
K11n147
K11n149
K11n149