© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n139
K11n139
K11n141
K11n141
K11n140
Knotscape
This page is passe. Go here instead!

   The Knot K11n140

Visit K11n140's page at Knotilus!

Acknowledgement

K11n140 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X5,16,6,17 X7,14,8,15 X20,9,21,10 X18,11,19,12 X2,13,3,14 X15,6,16,7 X22,18,1,17 X10,19,11,20 X8,21,9,22

Gauss Code: {1, -7, 2, -1, -3, 8, -4, -11, 5, -10, 6, -2, 7, 4, -8, 3, 9, -6, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 12 -16 -14 20 18 2 -6 22 10 8

Alexander Polynomial: - 2t-2 + 13t-1 - 21 + 13t - 2t2

Conway Polynomial: 1 + 5z2 - 2z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {51, -2}

Jones Polynomial: - 2q-8 + 3q-7 - 5q-6 + 8q-5 - 8q-4 + 9q-3 - 7q-2 + 5q-1 - 3 + q

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - 2q-26 - 2q-24 + q-22 - q-20 + q-18 + 3q-16 + 2q-12 + q-8 + q-6 - 2q-4 + 2q-2 - 1 - q2 + q4

HOMFLY-PT Polynomial: z2 - a2z4 + a4 + a4z2 - a4z4 + 2a6 + 3a6z2 - 2a8

Kauffman Polynomial: - z2 + z4 - 4az3 + 3az5 + a2z2 - 5a2z4 + 4a2z6 + 4a3z3 - 6a3z5 + 4a3z7 + a4 - 5a4z2 + 9a4z4 - 6a4z6 + 3a4z8 + 2a5z + a5z3 - 3a5z5 + a5z7 + a5z9 - 2a6 - 6a6z2 + 15a6z4 - 12a6z6 + 4a6z8 + 9a7z - 17a7z3 + 9a7z5 - 3a7z7 + a7z9 - 2a8 + a8z2 - 2a8z6 + a8z8 + 7a9z - 10a9z3 + 3a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, -11}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3         1
j = 1        2 
j = -1       31 
j = -3      53  
j = -5     42   
j = -7    45    
j = -9   44     
j = -11  14      
j = -13 24       
j = -15 1        
j = -172         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 140]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 140]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[5, 16, 6, 17], X[7, 14, 8, 15], 
 
>   X[20, 9, 21, 10], X[18, 11, 19, 12], X[2, 13, 3, 14], X[15, 6, 16, 7], 
 
>   X[22, 18, 1, 17], X[10, 19, 11, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 140]]
Out[4]=   
GaussCode[1, -7, 2, -1, -3, 8, -4, -11, 5, -10, 6, -2, 7, 4, -8, 3, 9, -6, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 140]]
Out[5]=   
DTCode[4, 12, -16, -14, 20, 18, 2, -6, 22, 10, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 140]][t]
Out[6]=   
      2    13             2
-21 - -- + -- + 13 t - 2 t
       2   t
      t
In[7]:=
Conway[Knot[11, NonAlternating, 140]][z]
Out[7]=   
       2      4
1 + 5 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 140]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 140]], KnotSignature[Knot[11, NonAlternating, 140]]}
Out[9]=   
{51, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 140]][q]
Out[10]=   
     2    3    5    8    8    9    7    5
-3 - -- + -- - -- + -- - -- + -- - -- + - + q
      8    7    6    5    4    3    2   q
     q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 140]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 140]][q]
Out[12]=   
      2     2     -22    -20    -18    3     2     -8    -6   2    2     2    4
-1 - --- - --- + q    - q    + q    + --- + --- + q   + q   - -- + -- - q  + q
      26    24                         16    12                4    2
     q     q                          q     q                 q    q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 140]][a, z]
Out[13]=   
 4      6      8    2    4  2      6  2    2  4    4  4
a  + 2 a  - 2 a  + z  + a  z  + 3 a  z  - a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 140]][a, z]
Out[14]=   
 4      6      8      5        7        9      2    2  2      4  2      6  2
a  - 2 a  - 2 a  + 2 a  z + 9 a  z + 7 a  z - z  + a  z  - 5 a  z  - 6 a  z  + 
 
     8  2        3      3  3    5  3       7  3       9  3    4      2  4
>   a  z  - 4 a z  + 4 a  z  + a  z  - 17 a  z  - 10 a  z  + z  - 5 a  z  + 
 
       4  4       6  4        5      3  5      5  5      7  5      9  5
>   9 a  z  + 15 a  z  + 3 a z  - 6 a  z  - 3 a  z  + 9 a  z  + 3 a  z  + 
 
       2  6      4  6       6  6      8  6      3  7    5  7      7  7
>   4 a  z  - 6 a  z  - 12 a  z  - 2 a  z  + 4 a  z  + a  z  - 3 a  z  + 
 
       4  8      6  8    8  8    5  9    7  9
>   3 a  z  + 4 a  z  + a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 140]], Vassiliev[3][Knot[11, NonAlternating, 140]]}
Out[15]=   
{5, -11}
In[16]:=
Kh[Knot[11, NonAlternating, 140]][q, t]
Out[16]=   
3    3     2        1        2        4        1        4        4       4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      4       5       4      2      5     t            3  2
>   ----- + ----- + ----- + ---- + ---- + - + 2 q t + q  t
     7  3    7  2    5  2    5      3     q
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n140
K11n139
K11n139
K11n141
K11n141