© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n136
K11n136
K11n138
K11n138
K11n137
Knotscape
This page is passe. Go here instead!

   The Knot K11n137

Visit K11n137's page at Knotilus!

Acknowledgement

K11n137 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X5,16,6,17 X7,14,8,15 X18,9,19,10 X20,11,21,12 X2,13,3,14 X15,6,16,7 X22,18,1,17 X10,19,11,20 X8,21,9,22

Gauss Code: {1, -7, 2, -1, -3, 8, -4, -11, 5, -10, 6, -2, 7, 4, -8, 3, 9, -5, 10, -6, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 12 -16 -14 18 20 2 -6 22 10 8

Alexander Polynomial: - t-3 + 7t-2 - 13t-1 + 15 - 13t + 7t2 - t3

Conway Polynomial: 1 + 6z2 + z4 - z6

Other knots with the same Alexander/Conway Polynomial: {K11n109, ...}

Determinant and Signature: {57, -4}

Jones Polynomial: - 2q-9 + 4q-8 - 7q-7 + 9q-6 - 9q-5 + 10q-4 - 7q-3 + 5q-2 - 3q-1 + 1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - 2q-28 - q-26 - 2q-22 + 2q-20 + 2q-16 + 3q-14 + 3q-10 - 2q-8 - q-2 + 1

HOMFLY-PT Polynomial: 2a2z2 + a2z4 - 2a4z2 - 3a4z4 - a4z6 + 4a6 + 8a6z2 + 3a6z4 - 3a8 - 2a8z2

Kauffman Polynomial: 2a2z2 - 3a2z4 + a2z6 + 8a3z3 - 10a3z5 + 3a3z7 - 2a4z2 + 5a4z4 - 8a4z6 + 3a4z8 + a5z + 5a5z3 - 12a5z5 + 3a5z7 + a5z9 - 4a6 + 3a6z2 + 3a6z4 - 10a6z6 + 5a6z8 + 5a7z - 6a7z3 - 2a7z5 + 2a7z7 + a7z9 - 3a8 + 6a8z2 - 3a8z4 + 2a8z8 + a9z + 2a9z7 - a10z2 + 2a10z4 + a10z6 - 3a11z + 3a11z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {6, -14}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 11137. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1         1
j = -1        2 
j = -3       31 
j = -5      53  
j = -7     52   
j = -9    45    
j = -11   55     
j = -13  24      
j = -15 25       
j = -17 2        
j = -192         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 137]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 137]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[5, 16, 6, 17], X[7, 14, 8, 15], 
 
>   X[18, 9, 19, 10], X[20, 11, 21, 12], X[2, 13, 3, 14], X[15, 6, 16, 7], 
 
>   X[22, 18, 1, 17], X[10, 19, 11, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 137]]
Out[4]=   
GaussCode[1, -7, 2, -1, -3, 8, -4, -11, 5, -10, 6, -2, 7, 4, -8, 3, 9, -5, 10, 
 
>   -6, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 137]]
Out[5]=   
DTCode[4, 12, -16, -14, 18, 20, 2, -6, 22, 10, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 137]][t]
Out[6]=   
      -3   7    13             2    3
15 - t   + -- - -- - 13 t + 7 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 137]][z]
Out[7]=   
       2    4    6
1 + 6 z  + z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 109], Knot[11, NonAlternating, 137]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 137]], KnotSignature[Knot[11, NonAlternating, 137]]}
Out[9]=   
{57, -4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 137]][q]
Out[10]=   
    2    4    7    9    9    10   7    5    3
1 - -- + -- - -- + -- - -- + -- - -- + -- - -
     9    8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 137]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 137]][q]
Out[12]=   
     2     -26    2     2     2     3     3    2     -2
1 - --- - q    - --- + --- + --- + --- + --- - -- - q
     28           22    20    16    14    10    8
    q            q     q     q     q     q     q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 137]][a, z]
Out[13]=   
   6      8      2  2      4  2      6  2      8  2    2  4      4  4
4 a  - 3 a  + 2 a  z  - 2 a  z  + 8 a  z  - 2 a  z  + a  z  - 3 a  z  + 
 
       6  4    4  6
>   3 a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 137]][a, z]
Out[14]=   
    6      8    5        7      9        11        2  2      4  2      6  2
-4 a  - 3 a  + a  z + 5 a  z + a  z - 3 a   z + 2 a  z  - 2 a  z  + 3 a  z  + 
 
       8  2    10  2      3  3      5  3      7  3      11  3      2  4
>   6 a  z  - a   z  + 8 a  z  + 5 a  z  - 6 a  z  + 3 a   z  - 3 a  z  + 
 
       4  4      6  4      8  4      10  4       3  5       5  5      7  5
>   5 a  z  + 3 a  z  - 3 a  z  + 2 a   z  - 10 a  z  - 12 a  z  - 2 a  z  + 
 
     2  6      4  6       6  6    10  6      3  7      5  7      7  7
>   a  z  - 8 a  z  - 10 a  z  + a   z  + 3 a  z  + 3 a  z  + 2 a  z  + 
 
       9  7      4  8      6  8      8  8    5  9    7  9
>   2 a  z  + 3 a  z  + 5 a  z  + 2 a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 137]], Vassiliev[3][Knot[11, NonAlternating, 137]]}
Out[15]=   
{6, -14}
In[16]:=
Kh[Knot[11, NonAlternating, 137]][q, t]
Out[16]=   
3    3      2        2        2        5        2        4        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        4       5       5      2      5     t    2 t      2
>   ------ + ----- + ----- + ----- + ---- + ---- + -- + --- + q t
     11  3    9  3    9  2    7  2    7      5      3    q
    q   t    q  t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n137
K11n136
K11n136
K11n138
K11n138