© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n134
K11n134
K11n136
K11n136
K11n135
Knotscape
This page is passe. Go here instead!

   The Knot K11n135

Visit K11n135's page at Knotilus!

Acknowledgement

K11n135 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X14,6,15,5 X7,17,8,16 X22,10,1,9 X11,19,12,18 X2,13,3,14 X15,20,16,21 X17,11,18,10 X19,7,20,6 X8,22,9,21

Gauss Code: {1, -7, 2, -1, 3, 10, -4, -11, 5, 9, -6, -2, 7, -3, -8, 4, -9, 6, -10, 8, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 12 14 -16 22 -18 2 -20 -10 -6 8

Alexander Polynomial: - t-3 + 2t-2 - 1 + 2t2 - t3

Conway Polynomial: 1 - z2 - 4z4 - z6

Other knots with the same Alexander/Conway Polynomial: {K11n19, ...}

Determinant and Signature: {5, 4}

Jones Polynomial: 1 - q + 2q2 - q3 + q4 - q5 - q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 + q2 + q4 + q6 + q8 + q10 - q12 - 2q16 - q18 - q20 + q24 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - a-6 - 2a-4 - 6a-4z2 - 5a-4z4 - a-4z6 + 3a-2 + 4a-2z2 + a-2z4

Kauffman Polynomial: 5a-10z2 - 5a-10z4 + a-10z6 - 3a-9z + 9a-9z3 - 6a-9z5 + a-9z7 + a-8 + a-8z2 - a-8z4 - 3a-7z + 3a-7z3 - a-7z5 + a-6 - 2a-6z2 + 2a-5z - 4a-5z3 + a-5z5 - 2a-4 + 9a-4z2 - 9a-4z4 + 2a-4z6 + 2a-3z + 2a-3z3 - 4a-3z5 + a-3z7 - 3a-2 + 7a-2z2 - 5a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11135. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19          1
j = 17           
j = 15       111 
j = 13      11   
j = 11     111   
j = 9    121    
j = 7   11      
j = 5  111      
j = 3 12        
j = 1           
j = -11          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 135]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 135]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[14, 6, 15, 5], X[7, 17, 8, 16], 
 
>   X[22, 10, 1, 9], X[11, 19, 12, 18], X[2, 13, 3, 14], X[15, 20, 16, 21], 
 
>   X[17, 11, 18, 10], X[19, 7, 20, 6], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 135]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, 10, -4, -11, 5, 9, -6, -2, 7, -3, -8, 4, -9, 6, -10, 
 
>   8, 11, -5]
In[5]:=
DTCode[Knot[11, NonAlternating, 135]]
Out[5]=   
DTCode[4, 12, 14, -16, 22, -18, 2, -20, -10, -6, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 135]][t]
Out[6]=   
      -3   2       2    3
-1 - t   + -- + 2 t  - t
            2
           t
In[7]:=
Conway[Knot[11, NonAlternating, 135]][z]
Out[7]=   
     2      4    6
1 - z  - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 19], Knot[11, NonAlternating, 135]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 135]], KnotSignature[Knot[11, NonAlternating, 135]]}
Out[9]=   
{5, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 135]][q]
Out[10]=   
           2    3    4    5    8    9
1 - q + 2 q  - q  + q  - q  - q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 135]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 135]][q]
Out[12]=   
     2    4    6    8    10    12      16    18    20    24    28
1 + q  + q  + q  + q  + q   - q   - 2 q   - q   - q   + q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 135]][a, z]
Out[13]=   
                       2      2      2      4    4    6
 -8    -6   2    3    z    6 z    4 z    5 z    z    z
a   - a   - -- + -- + -- - ---- + ---- - ---- + -- - --
             4    2    8     4      2      4     2    4
            a    a    a     a      a      a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 135]][a, z]
Out[14]=   
                                                 2    2      2      2      2
 -8    -6   2    3    3 z   3 z   2 z   2 z   5 z    z    2 z    9 z    7 z
a   + a   - -- - -- - --- - --- + --- + --- + ---- + -- - ---- + ---- + ---- + 
             4    2    9     7     5     3     10     8     6      4      2
            a    a    a     a     a     a     a      a     a      a      a
 
       3      3      3      3      4    4      4      4      5    5    5
    9 z    3 z    4 z    2 z    5 z    z    9 z    5 z    6 z    z    z
>   ---- + ---- - ---- + ---- - ---- - -- - ---- - ---- - ---- - -- + -- - 
      9      7      5      3     10     8     4      2      9     7    5
     a      a      a      a     a      a     a      a      a     a    a
 
       5    6       6    6    7    7
    4 z    z     2 z    z    z    z
>   ---- + --- + ---- + -- + -- + --
      3     10     4     2    9    3
     a     a      a     a    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 135]], Vassiliev[3][Knot[11, NonAlternating, 135]]}
Out[15]=   
{-1, -4}
In[16]:=
Kh[Knot[11, NonAlternating, 135]][q, t]
Out[16]=   
                    3
   3    5    1     q     5      7      5  2    7  2    9  2      9  3
2 q  + q  + ---- + -- + q  t + q  t + q  t  + q  t  + q  t  + 2 q  t  + 
               2   t
            q t
 
     11  3    9  4    11  4    13  4    11  5    13  5    15  5    15  6
>   q   t  + q  t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     15  7    19  8
>   q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n135
K11n134
K11n134
K11n136
K11n136