© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n132
K11n132
K11n134
K11n134
K11n133
Knotscape
This page is passe. Go here instead!

   The Knot K11n133

Visit K11n133's page at Knotilus!

Acknowledgement

K11n133 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X5,19,6,18 X7,20,8,21 X2,10,3,9 X11,17,12,16 X13,6,14,7 X15,9,16,8 X17,1,18,22 X19,15,20,14 X21,12,22,13

Gauss Code: {1, -5, 2, -1, -3, 7, -4, 8, 5, -2, -6, 11, -7, 10, -8, 6, -9, 3, -10, 4, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 -18 -20 2 -16 -6 -8 -22 -14 -12

Alexander Polynomial: t-4 - 4t-3 + 6t-2 - 2t-1 - 1 - 2t + 6t2 - 4t3 + t4

Conway Polynomial: 1 + 2z2 + 2z4 + 4z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {25, 4}

Jones Polynomial: - q-1 + 3 - 3q + 4q2 - 4q3 + 4q4 - 3q5 + 2q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11n50, K11n132, ...}

A2 (sl(3)) Invariant: - q-2 + 1 + q2 + q4 + q6 + q8 + q10 - 2q12 + q14 - q16 + q18 - 2q26 + q28

HOMFLY-PT Polynomial: a-8z2 - a-6 - 5a-6z2 - 5a-6z4 - a-6z6 + a-4 + 8a-4z2 + 11a-4z4 + 6a-4z6 + a-4z8 + a-2 - 2a-2z2 - 4a-2z4 - a-2z6

Kauffman Polynomial: - a-8z2 - 3a-7z + 6a-7z3 - 5a-7z5 + a-7z7 + a-6 - 11a-6z2 + 23a-6z4 - 16a-6z6 + 3a-6z8 - 5a-5z + 10a-5z3 + 2a-5z5 - 8a-5z7 + 2a-5z9 + a-4 - 16a-4z2 + 42a-4z4 - 31a-4z6 + 6a-4z8 - 3a-3z + 7a-3z3 + 3a-3z5 - 8a-3z7 + 2a-3z9 - a-2 - 6a-2z2 + 19a-2z4 - 15a-2z6 + 3a-2z8 - a-1z + 3a-1z3 - 4a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11133. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 15        1
j = 13       21
j = 11      21 
j = 9     221 
j = 7    33   
j = 5   22    
j = 3  241    
j = 1 11      
j = -1 2       
j = -31        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 133]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 133]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 19, 6, 18], X[7, 20, 8, 21], 
 
>   X[2, 10, 3, 9], X[11, 17, 12, 16], X[13, 6, 14, 7], X[15, 9, 16, 8], 
 
>   X[17, 1, 18, 22], X[19, 15, 20, 14], X[21, 12, 22, 13]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 133]]
Out[4]=   
GaussCode[1, -5, 2, -1, -3, 7, -4, 8, 5, -2, -6, 11, -7, 10, -8, 6, -9, 3, -10, 
 
>   4, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 133]]
Out[5]=   
DTCode[4, 10, -18, -20, 2, -16, -6, -8, -22, -14, -12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 133]][t]
Out[6]=   
      -4   4    6    2            2      3    4
-1 + t   - -- + -- - - - 2 t + 6 t  - 4 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, NonAlternating, 133]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  + 2 z  + 4 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 133]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 133]], KnotSignature[Knot[11, NonAlternating, 133]]}
Out[9]=   
{25, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 133]][q]
Out[10]=   
    1            2      3      4      5      6    7
3 - - - 3 q + 4 q  - 4 q  + 4 q  - 3 q  + 2 q  - q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 50], Knot[11, NonAlternating, 132], 
 
>   Knot[11, NonAlternating, 133]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 133]][q]
Out[12]=   
     -2    2    4    6    8    10      12    14    16    18      26    28
1 - q   + q  + q  + q  + q  + q   - 2 q   + q   - q   + q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 133]][a, z]
Out[13]=   
                    2      2      2      2      4       4      4    6      6
  -6    -4    -2   z    5 z    8 z    2 z    5 z    11 z    4 z    z    6 z
-a   + a   + a   + -- - ---- + ---- - ---- - ---- + ----- - ---- - -- + ---- - 
                    8     6      4      2      6      4       2     6     4
                   a     a      a      a      a      a       a     a     a
 
     6    8
    z    z
>   -- + --
     2    4
    a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 133]][a, z]
Out[14]=   
                                         2       2       2      2      3
 -6    -4    -2   3 z   5 z   3 z   z   z    11 z    16 z    6 z    6 z
a   + a   - a   - --- - --- - --- - - - -- - ----- - ----- - ---- + ---- + 
                   7     5     3    a    8     6       4       2      7
                  a     a     a         a     a       a       a      a
 
        3      3      3       4       4       4      5      5      5      5
    10 z    7 z    3 z    23 z    42 z    19 z    5 z    2 z    3 z    4 z
>   ----- + ---- + ---- + ----- + ----- + ----- - ---- + ---- + ---- - ---- - 
      5       3     a       6       4       2       7      5      3     a
     a       a             a       a       a       a      a      a
 
        6       6       6    7      7      7    7      8      8      8      9
    16 z    31 z    15 z    z    8 z    8 z    z    3 z    6 z    3 z    2 z
>   ----- - ----- - ----- + -- - ---- - ---- + -- + ---- + ---- + ---- + ---- + 
      6       4       2      7     5      3    a      6      4      2      5
     a       a       a      a     a      a           a      a      a      a
 
       9
    2 z
>   ----
      3
     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 133]], Vassiliev[3][Knot[11, NonAlternating, 133]]}
Out[15]=   
{2, 3}
In[16]:=
Kh[Knot[11, NonAlternating, 133]][q, t]
Out[16]=   
                                         3
   3      5     1      2     q    q   2 q     3        5        7        7  2
4 q  + 2 q  + ----- + ---- + -- + - + ---- + q  t + 2 q  t + 3 q  t + 3 q  t  + 
               3  3      2    2   t    t
              q  t    q t    t
 
       9  2      9  3      11  3    9  4    11  4      13  4    13  5    15  5
>   2 q  t  + 2 q  t  + 2 q   t  + q  t  + q   t  + 2 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n133
K11n132
K11n132
K11n134
K11n134