© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n128
K11n128
K11n130
K11n130
K11n129
Knotscape
This page is passe. Go here instead!

   The Knot K11n129

Visit K11n129's page at Knotilus!

Acknowledgement

K11n129 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,19,6,18 X7,14,8,15 X9,16,10,17 X2,11,3,12 X13,20,14,21 X15,8,16,9 X17,1,18,22 X19,12,20,13 X21,7,22,6

Gauss Code: {1, -6, 2, -1, -3, 11, -4, 8, -5, -2, 6, 10, -7, 4, -8, 5, -9, 3, -10, 7, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 -18 -14 -16 2 -20 -8 -22 -12 -6

Alexander Polynomial: t-3 - 4t-2 + 10t-1 - 13 + 10t - 4t2 + t3

Conway Polynomial: 1 + 3z2 + 2z4 + z6

Other knots with the same Alexander/Conway Polynomial: {10151, K11n54, ...}

Determinant and Signature: {43, -2}

Jones Polynomial: - q-8 + 2q-7 - 4q-6 + 6q-5 - 7q-4 + 8q-3 - 6q-2 + 5q-1 - 3 + q

Other knots (up to mirrors) with the same Jones Polynomial: {921, ...}

A2 (sl(3)) Invariant: - q-24 - 2q-20 - q-18 + 2q-16 + 3q-12 + q-10 + q-8 + q-6 - 2q-4 + q-2 - 1 + q4

HOMFLY-PT Polynomial: 1 + z2 - 3a2 - 5a2z2 - 2a2z4 + 6a4 + 10a4z2 + 5a4z4 + a4z6 - 3a6 - 3a6z2 - a6z4

Kauffman Polynomial: 1 - 2z2 + z4 - 5az3 + 3az5 + 3a2 - 11a2z2 + 9a2z4 - 3a2z6 + a2z8 - 2a3z - a3z3 + 6a3z5 - 3a3z7 + a3z9 + 6a4 - 21a4z2 + 30a4z4 - 16a4z6 + 4a4z8 - 6a5z + 15a5z3 - 7a5z5 + a5z9 + 3a6 - 11a6z2 + 17a6z4 - 11a6z6 + 3a6z8 - 3a7z + 8a7z3 - 9a7z5 + 3a7z7 + a8z2 - 5a8z4 + 2a8z6 + a9z - 3a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11129. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3         1
j = 1        2 
j = -1       31 
j = -3      43  
j = -5     42   
j = -7    34    
j = -9   34     
j = -11  13      
j = -13 13       
j = -15 1        
j = -171         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 129]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 129]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 19, 6, 18], X[7, 14, 8, 15], 
 
>   X[9, 16, 10, 17], X[2, 11, 3, 12], X[13, 20, 14, 21], X[15, 8, 16, 9], 
 
>   X[17, 1, 18, 22], X[19, 12, 20, 13], X[21, 7, 22, 6]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 129]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 11, -4, 8, -5, -2, 6, 10, -7, 4, -8, 5, -9, 3, -10, 
 
>   7, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 129]]
Out[5]=   
DTCode[4, 10, -18, -14, -16, 2, -20, -8, -22, -12, -6]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 129]][t]
Out[6]=   
       -3   4    10             2    3
-13 + t   - -- + -- + 10 t - 4 t  + t
             2   t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 129]][z]
Out[7]=   
       2      4    6
1 + 3 z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 151], Knot[11, NonAlternating, 54], Knot[11, NonAlternating, 129]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 129]], KnotSignature[Knot[11, NonAlternating, 129]]}
Out[9]=   
{43, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 129]][q]
Out[10]=   
      -8   2    4    6    7    8    6    5
-3 - q   + -- - -- + -- - -- + -- - -- + - + q
            7    6    5    4    3    2   q
           q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[9, 21], Knot[11, NonAlternating, 129]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 129]][q]
Out[12]=   
      -24    2     -18    2     3     -10    -8    -6   2     -2    4
-1 - q    - --- - q    + --- + --- + q    + q   + q   - -- + q   + q
             20           16    12                       4
            q            q     q                        q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 129]][a, z]
Out[13]=   
       2      4      6    2      2  2       4  2      6  2      2  4
1 - 3 a  + 6 a  - 3 a  + z  - 5 a  z  + 10 a  z  - 3 a  z  - 2 a  z  + 
 
       4  4    6  4    4  6
>   5 a  z  - a  z  + a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 129]][a, z]
Out[14]=   
       2      4      6      3        5        7      9        2       2  2
1 + 3 a  + 6 a  + 3 a  - 2 a  z - 6 a  z - 3 a  z + a  z - 2 z  - 11 a  z  - 
 
        4  2       6  2    8  2        3    3  3       5  3      7  3
>   21 a  z  - 11 a  z  + a  z  - 5 a z  - a  z  + 15 a  z  + 8 a  z  - 
 
       9  3    4      2  4       4  4       6  4      8  4        5      3  5
>   3 a  z  + z  + 9 a  z  + 30 a  z  + 17 a  z  - 5 a  z  + 3 a z  + 6 a  z  - 
 
       5  5      7  5    9  5      2  6       4  6       6  6      8  6
>   7 a  z  - 9 a  z  + a  z  - 3 a  z  - 16 a  z  - 11 a  z  + 2 a  z  - 
 
       3  7      7  7    2  8      4  8      6  8    3  9    5  9
>   3 a  z  + 3 a  z  + a  z  + 4 a  z  + 3 a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 129]], Vassiliev[3][Knot[11, NonAlternating, 129]]}
Out[15]=   
{3, -6}
In[16]:=
Kh[Knot[11, NonAlternating, 129]][q, t]
Out[16]=   
3    3     1        1        1        3        1        3        3       4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      3       4       4      2      4     t            3  2
>   ----- + ----- + ----- + ---- + ---- + - + 2 q t + q  t
     7  3    7  2    5  2    5      3     q
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n129
K11n128
K11n128
K11n130
K11n130