© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n124
K11n124
K11n126
K11n126
K11n125
Knotscape
This page is passe. Go here instead!

   The Knot K11n125

Visit K11n125's page at Knotilus!

Acknowledgement

K11n125 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,17,6,16 X7,19,8,18 X14,10,15,9 X2,11,3,12 X20,14,21,13 X22,15,1,16 X17,7,18,6 X12,20,13,19 X8,21,9,22

Gauss Code: {1, -6, 2, -1, -3, 9, -4, -11, 5, -2, 6, -10, 7, -5, 8, 3, -9, 4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 -16 -18 14 2 20 22 -6 12 8

Alexander Polynomial: t-3 - 6t-2 + 15t-1 - 19 + 15t - 6t2 + t3

Conway Polynomial: 1 + z6

Other knots with the same Alexander/Conway Polynomial: {K11n176, ...}

Determinant and Signature: {63, 2}

Jones Polynomial: q-1 - 3 + 7q - 9q2 + 11q3 - 11q4 + 9q5 - 7q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-4 - 1 + 3q2 - q4 + 2q6 + q8 - 2q10 + q12 - 3q14 + 2q16 - q20 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6z2 - a-6z4 + 3a-4z2 + 3a-4z4 + a-4z6 - 3a-2z2 - 2a-2z4 + 1 + z2

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 7a-8z4 + 4a-8z6 + 4a-7z3 - 12a-7z5 + 6a-7z7 + a-6z2 - 3a-6z4 - 4a-6z6 + 4a-6z8 + 8a-5z3 - 14a-5z5 + 6a-5z7 + a-5z9 - 3a-4z2 + 9a-4z4 - 9a-4z6 + 5a-4z8 + 2a-3z5 + a-3z9 - 5a-2z2 + 6a-2z4 - a-2z6 + a-2z8 - 3a-1z3 + 3a-1z5 + 1 - 2z2 + z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11125. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17         1
j = 15        3 
j = 13       41 
j = 11      53  
j = 9     64   
j = 7    55    
j = 5   46     
j = 3  35      
j = 1 15       
j = -1 2        
j = -31         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 125]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 125]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 17, 6, 16], X[7, 19, 8, 18], 
 
>   X[14, 10, 15, 9], X[2, 11, 3, 12], X[20, 14, 21, 13], X[22, 15, 1, 16], 
 
>   X[17, 7, 18, 6], X[12, 20, 13, 19], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 125]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 9, -4, -11, 5, -2, 6, -10, 7, -5, 8, 3, -9, 4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, NonAlternating, 125]]
Out[5]=   
DTCode[4, 10, -16, -18, 14, 2, 20, 22, -6, 12, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 125]][t]
Out[6]=   
       -3   6    15             2    3
-19 + t   - -- + -- + 15 t - 6 t  + t
             2   t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 125]][z]
Out[7]=   
     6
1 + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 125], Knot[11, NonAlternating, 176]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 125]], KnotSignature[Knot[11, NonAlternating, 125]]}
Out[9]=   
{63, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 125]][q]
Out[10]=   
     1            2       3       4      5      6      7    8
-3 + - + 7 q - 9 q  + 11 q  - 11 q  + 9 q  - 7 q  + 4 q  - q
     q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 125]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 125]][q]
Out[12]=   
      -4      2    4      6    8      10    12      14      16    20      22
-1 + q   + 3 q  - q  + 2 q  + q  - 2 q   + q   - 3 q   + 2 q   - q   + 2 q   - 
 
     24
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 125]][a, z]
Out[13]=   
          2      2      2    4      4      4    6
     2   z    3 z    3 z    z    3 z    2 z    z
1 + z  - -- + ---- - ---- - -- + ---- - ---- + --
          6     4      2     6     4      2     4
         a     a      a     a     a      a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 125]][a, z]
Out[14]=   
            2    2      2      2    3      3      3      3           4      4
       2   z    z    3 z    5 z    z    4 z    8 z    3 z     4   7 z    3 z
1 - 2 z  + -- + -- - ---- - ---- - -- + ---- + ---- - ---- + z  - ---- - ---- + 
            8    6     4      2     9     7      5     a            8      6
           a    a     a      a     a     a      a                  a      a
 
       4      4    5       5       5      5      5      6      6      6    6
    9 z    6 z    z    12 z    14 z    2 z    3 z    4 z    4 z    9 z    z
>   ---- + ---- + -- - ----- - ----- + ---- + ---- + ---- - ---- - ---- - -- + 
      4      2     9     7       5       3     a       8      6      4     2
     a      a     a     a       a       a             a      a      a     a
 
       7      7      8      8    8    9    9
    6 z    6 z    4 z    5 z    z    z    z
>   ---- + ---- + ---- + ---- + -- + -- + --
      7      5      6      4     2    5    3
     a      a      a      a     a    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 125]], Vassiliev[3][Knot[11, NonAlternating, 125]]}
Out[15]=   
{0, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 125]][q, t]
Out[16]=   
         3     1      2    q      3        5        5  2      7  2      7  3
5 q + 3 q  + ----- + --- + - + 5 q  t + 4 q  t + 6 q  t  + 5 q  t  + 5 q  t  + 
              3  2   q t   t
             q  t
 
       9  3      9  4      11  4      11  5      13  5    13  6      15  6
>   6 q  t  + 4 q  t  + 5 q   t  + 3 q   t  + 4 q   t  + q   t  + 3 q   t  + 
 
     17  7
>   q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n125
K11n124
K11n124
K11n126
K11n126