© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n11
K11n11
K11n13
K11n13
K11n12
Knotscape
This page is passe. Go here instead!

   The Knot K11n12

Visit K11n12's page at Knotilus!

Acknowledgement

K11n12 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X7,14,8,15 X2,9,3,10 X11,19,12,18 X13,6,14,7 X15,1,16,22 X17,21,18,20 X19,13,20,12 X21,17,22,16

Gauss Code: {1, -5, 2, -1, 3, 7, -4, -2, 5, -3, -6, 10, -7, 4, -8, 11, -9, 6, -10, 9, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 8 10 -14 2 -18 -6 -22 -20 -12 -16

Alexander Polynomial: t-2 - 3t-1 + 5 - 3t + t2

Conway Polynomial: 1 + z2 + z4

Other knots with the same Alexander/Conway Polynomial: {63, ...}

Determinant and Signature: {13, 0}

Jones Polynomial: 1 - q + 2q2 - 2q3 + 2q4 - 2q5 + 2q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {943, ...}

A2 (sl(3)) Invariant: q-2 + 1 + q10 + q14 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 2a-4 + 3a-4z2 + a-4z4 - a-2 - a-2z2 + 1

Kauffman Polynomial: - 2a-7z + 6a-7z3 - 5a-7z5 + a-7z7 + a-6 - 7a-6z2 + 16a-6z4 - 11a-6z6 + 2a-6z8 - 3a-5z + 7a-5z3 - 4a-5z7 + a-5z9 + 2a-4 - 13a-4z2 + 26a-4z4 - 17a-4z6 + 3a-4z8 - a-3z + 5a-3z5 - 5a-3z7 + a-3z9 + a-2 - 7a-2z2 + 10a-2z4 - 6a-2z6 + a-2z8 - a-1z3 + 1 - z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 15       1
j = 13      1 
j = 11     11 
j = 9   121  
j = 7   11   
j = 5  22    
j = 3111     
j = 111      
j = -11       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 12]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 12]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[7, 14, 8, 15], 
 
>   X[2, 9, 3, 10], X[11, 19, 12, 18], X[13, 6, 14, 7], X[15, 1, 16, 22], 
 
>   X[17, 21, 18, 20], X[19, 13, 20, 12], X[21, 17, 22, 16]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 12]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, 7, -4, -2, 5, -3, -6, 10, -7, 4, -8, 11, -9, 6, -10, 
 
>   9, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 12]]
Out[5]=   
DTCode[4, 8, 10, -14, 2, -18, -6, -22, -20, -12, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 12]][t]
Out[6]=   
     -2   3          2
5 + t   - - - 3 t + t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 12]][z]
Out[7]=   
     2    4
1 + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[6, 3], Knot[11, NonAlternating, 12]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 12]], KnotSignature[Knot[11, NonAlternating, 12]]}
Out[9]=   
{13, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 12]][q]
Out[10]=   
           2      3      4      5      6    7
1 - q + 2 q  - 2 q  + 2 q  - 2 q  + 2 q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[9, 43], Knot[11, NonAlternating, 12]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 12]][q]
Out[12]=   
     -2    10    14    22
1 + q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 12]][a, z]
Out[13]=   
                      2      2    2    4
     -6   2     -2   z    3 z    z    z
1 - a   + -- - a   - -- + ---- - -- + --
           4          6     4     2    4
          a          a     a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 12]][a, z]
Out[14]=   
                                              2       2      2      3      3
     -6   2     -2   2 z   3 z   z     2   7 z    13 z    7 z    6 z    7 z
1 + a   + -- + a   - --- - --- - -- - z  - ---- - ----- - ---- + ---- + ---- - 
           4          7     5     3          6      4       2      7      5
          a          a     a     a          a      a       a      a      a
 
     3       4       4       4      5      5       6       6      6    7
    z    16 z    26 z    10 z    5 z    5 z    11 z    17 z    6 z    z
>   -- + ----- + ----- + ----- - ---- + ---- - ----- - ----- - ---- + -- - 
    a      6       4       2       7      3      6       4       2     7
          a       a       a       a      a      a       a       a     a
 
       7      7      8      8    8    9    9
    4 z    5 z    2 z    3 z    z    z    z
>   ---- - ---- + ---- + ---- + -- + -- + --
      5      3      6      4     2    5    3
     a      a      a      a     a    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 12]], Vassiliev[3][Knot[11, NonAlternating, 12]]}
Out[15]=   
{1, 2}
In[16]:=
Kh[Knot[11, NonAlternating, 12]][q, t]
Out[16]=   
1        3          3      3  2      5  2      5  3    7  3    9  3    7  4
- + q + q  + q t + q  t + q  t  + 2 q  t  + 2 q  t  + q  t  + q  t  + q  t  + 
q
 
       9  4    9  5    11  5    11  6    13  6    15  7
>   2 q  t  + q  t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n12
K11n11
K11n11
K11n13
K11n13