© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n117
K11n117
K11n119
K11n119
K11n118
Knotscape
This page is passe. Go here instead!

   The Knot K11n118

Visit K11n118's page at Knotilus!

Acknowledgement

K11n118 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X5,15,6,14 X20,8,21,7 X2,10,3,9 X11,17,12,16 X13,18,14,19 X15,9,16,8 X17,1,18,22 X6,20,7,19 X21,12,22,13

Gauss Code: {1, -5, 2, -1, -3, -10, 4, 8, 5, -2, -6, 11, -7, 3, -8, 6, -9, 7, 10, -4, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 20 2 -16 -18 -8 -22 6 -12

Alexander Polynomial: - t-3 + 4t-2 - 4t-1 + 3 - 4t + 4t2 - t3

Conway Polynomial: 1 + 3z2 - 2z4 - z6

Other knots with the same Alexander/Conway Polynomial: {10160, ...}

Determinant and Signature: {21, 4}

Jones Polynomial: 2q2 - 2q3 + 3q4 - 4q5 + 4q6 - 3q7 + 2q8 - q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 2q6 + q8 + 2q10 - 2q18 - q22 + q24 + q26 - q32

HOMFLY-PT Polynomial: - a-10 + 3a-8 + 4a-8z2 + a-8z4 - 5a-6 - 8a-6z2 - 5a-6z4 - a-6z6 + 4a-4 + 7a-4z2 + 2a-4z4

Kauffman Polynomial: - 2a-11z + a-11z3 + a-10 - 3a-10z2 + 2a-10z4 - 3a-9z + 8a-9z3 - 4a-9z5 + a-9z7 + 3a-8 - 9a-8z2 + 12a-8z4 - 5a-8z6 + a-8z8 - 3a-7z + 10a-7z3 - 7a-7z5 + 2a-7z7 + 5a-6 - 15a-6z2 + 13a-6z4 - 5a-6z6 + a-6z8 - 2a-5z + 3a-5z3 - 3a-5z5 + a-5z7 + 4a-4 - 9a-4z2 + 3a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 19       1
j = 17      1 
j = 15     21 
j = 13    21  
j = 11   22   
j = 9  12    
j = 7 12     
j = 511      
j = 32       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 118]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 118]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 15, 6, 14], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[11, 17, 12, 16], X[13, 18, 14, 19], X[15, 9, 16, 8], 
 
>   X[17, 1, 18, 22], X[6, 20, 7, 19], X[21, 12, 22, 13]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 118]]
Out[4]=   
GaussCode[1, -5, 2, -1, -3, -10, 4, 8, 5, -2, -6, 11, -7, 3, -8, 6, -9, 7, 10, 
 
>   -4, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 118]]
Out[5]=   
DTCode[4, 10, -14, 20, 2, -16, -18, -8, -22, 6, -12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 118]][t]
Out[6]=   
     -3   4    4            2    3
3 - t   + -- - - - 4 t + 4 t  - t
           2   t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 118]][z]
Out[7]=   
       2      4    6
1 + 3 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 160], Knot[11, NonAlternating, 118]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 118]], KnotSignature[Knot[11, NonAlternating, 118]]}
Out[9]=   
{21, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 118]][q]
Out[10]=   
   2      3      4      5      6      7      8    9
2 q  - 2 q  + 3 q  - 4 q  + 4 q  - 3 q  + 2 q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 118]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 118]][q]
Out[12]=   
   6    8      10      18    22    24    26    32
2 q  + q  + 2 q   - 2 q   - q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 118]][a, z]
Out[13]=   
                          2      2      2    4      4      4    6
  -10   3    5    4    4 z    8 z    7 z    z    5 z    2 z    z
-a    + -- - -- + -- + ---- - ---- + ---- + -- - ---- + ---- - --
         8    6    4     8      6      4     8     6      4     6
        a    a    a     a      a      a     a     a      a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 118]][a, z]
Out[14]=   
                                                 2      2       2      2
 -10   3    5    4    2 z   3 z   3 z   2 z   3 z    9 z    15 z    9 z
a    + -- + -- + -- - --- - --- - --- - --- - ---- - ---- - ----- - ---- + 
        8    6    4    11    9     7     5     10      8      6       4
       a    a    a    a     a     a     a     a       a      a       a
 
     3       3       3      3      4       4       4      4      5      5
    z     8 z    10 z    3 z    2 z    12 z    13 z    3 z    4 z    7 z
>   --- + ---- + ----- + ---- + ---- + ----- + ----- + ---- - ---- - ---- - 
     11     9      7       5     10      8       6       4      9      7
    a      a      a       a     a       a       a       a      a      a
 
       5      6      6    7      7    7    8    8
    3 z    5 z    5 z    z    2 z    z    z    z
>   ---- - ---- - ---- + -- + ---- + -- + -- + --
      5      8      6     9     7     5    8    6
     a      a      a     a     a     a    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 118]], Vassiliev[3][Knot[11, NonAlternating, 118]]}
Out[15]=   
{3, 6}
In[16]:=
Kh[Knot[11, NonAlternating, 118]][q, t]
Out[16]=   
   3    5    5      7        7  2    9  2      9  3      11  3      11  4
2 q  + q  + q  t + q  t + 2 q  t  + q  t  + 2 q  t  + 2 q   t  + 2 q   t  + 
 
       13  4    13  5      15  5    15  6    17  6    19  7
>   2 q   t  + q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n118
K11n117
K11n117
K11n119
K11n119