© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n112
K11n112
K11n114
K11n114
K11n113
Knotscape
This page is passe. Go here instead!

   The Knot K11n113

Visit K11n113's page at Knotilus!

Acknowledgement

K11n113 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,14,6,15 X18,7,19,8 X16,9,17,10 X2,11,3,12 X20,13,21,14 X15,22,16,1 X8,17,9,18 X12,19,13,20 X21,7,22,6

Gauss Code: {1, -6, 2, -1, -3, 11, 4, -9, 5, -2, 6, -10, 7, 3, -8, -5, 9, -4, 10, -7, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 18 16 2 20 -22 8 12 -6

Alexander Polynomial: - t-2 + 9t-1 - 15 + 9t - t2

Conway Polynomial: 1 + 5z2 - z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {35, -2}

Jones Polynomial: - q-10 + 2q-9 - 4q-8 + 5q-7 - 5q-6 + 6q-5 - 5q-4 + 4q-3 - 2q-2 + q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-32 - q-30 + q-28 - q-26 + q-22 - q-20 + q-18 + q-14 + q-12 + 2q-8 - q-4 + q-2

HOMFLY-PT Polynomial: a2z2 + 2a4 + 3a4z2 - a6 - a6z2 - a6z4 + a8 + 2a8z2 - a10

Kauffman Polynomial: a2z2 + 2a3z3 + 2a4 - 5a4z2 + 4a4z4 - 2a5z3 + a5z7 + a6 - 5a6z2 + 6a6z4 - 6a6z6 + 2a6z8 + a7z + a7z3 - 4a7z5 - a7z7 + a7z9 + a8 - 3a8z2 + 13a8z4 - 15a8z6 + 4a8z8 - 3a9z + 13a9z3 - 9a9z5 - a9z7 + a9z9 + a10 - 4a10z2 + 11a10z4 - 9a10z6 + 2a10z8 - 4a11z + 8a11z3 - 5a11z5 + a11z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, -12}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11113. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1         1
j = -3        21
j = -5       2  
j = -7      32  
j = -9     32   
j = -11    23    
j = -13   33     
j = -15  12      
j = -17 13       
j = -19 1        
j = -211         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 113]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 113]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 14, 6, 15], X[18, 7, 19, 8], 
 
>   X[16, 9, 17, 10], X[2, 11, 3, 12], X[20, 13, 21, 14], X[15, 22, 16, 1], 
 
>   X[8, 17, 9, 18], X[12, 19, 13, 20], X[21, 7, 22, 6]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 113]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 11, 4, -9, 5, -2, 6, -10, 7, 3, -8, -5, 9, -4, 10, 
 
>   -7, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 113]]
Out[5]=   
DTCode[4, 10, -14, 18, 16, 2, 20, -22, 8, 12, -6]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 113]][t]
Out[6]=   
       -2   9          2
-15 - t   + - + 9 t - t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 113]][z]
Out[7]=   
       2    4
1 + 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 113]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 113]], KnotSignature[Knot[11, NonAlternating, 113]]}
Out[9]=   
{35, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 113]][q]
Out[10]=   
  -10   2    4    5    5    6    5    4    2    1
-q    + -- - -- + -- - -- + -- - -- + -- - -- + -
         9    8    7    6    5    4    3    2   q
        q    q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 113]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 113]][q]
Out[12]=   
  -32    -30    -28    -26    -22    -20    -18    -14    -12   2     -4    -2
-q    - q    + q    - q    + q    - q    + q    + q    + q    + -- - q   + q
                                                                 8
                                                                q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 113]][a, z]
Out[13]=   
   4    6    8    10    2  2      4  2    6  2      8  2    6  4
2 a  - a  + a  - a   + a  z  + 3 a  z  - a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 113]][a, z]
Out[14]=   
   4    6    8    10    7        9        11      2  2      4  2      6  2
2 a  + a  + a  + a   + a  z - 3 a  z - 4 a   z + a  z  - 5 a  z  - 5 a  z  - 
 
       8  2      10  2      3  3      5  3    7  3       9  3      11  3
>   3 a  z  - 4 a   z  + 2 a  z  - 2 a  z  + a  z  + 13 a  z  + 8 a   z  + 
 
       4  4      6  4       8  4       10  4      7  5      9  5      11  5
>   4 a  z  + 6 a  z  + 13 a  z  + 11 a   z  - 4 a  z  - 9 a  z  - 5 a   z  - 
 
       6  6       8  6      10  6    5  7    7  7    9  7    11  7      6  8
>   6 a  z  - 15 a  z  - 9 a   z  + a  z  - a  z  - a  z  + a   z  + 2 a  z  + 
 
       8  8      10  8    7  9    9  9
>   4 a  z  + 2 a   z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 113]], Vassiliev[3][Knot[11, NonAlternating, 113]]}
Out[15]=   
{5, -12}
In[16]:=
Kh[Knot[11, NonAlternating, 113]][q, t]
Out[16]=   
 -3   1     1        1        1        3        1        2        3
q   + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
      q    21  9    19  8    17  8    17  7    15  7    15  6    13  6
          q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        2        3        3       2       3       2       2      2
>   ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----
     13  5    11  5    11  4    9  4    9  3    7  3    7  2    5  2    3
    q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n113
K11n112
K11n112
K11n114
K11n114