© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n105
K11n105
K11n107
K11n107
K11n106
Knotscape
This page is passe. Go here instead!

   The Knot K11n106

Visit K11n106's page at Knotilus!

Acknowledgement

K11n106 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X5,15,6,14 X7,16,8,17 X2,10,3,9 X20,11,21,12 X22,13,1,14 X15,18,16,19 X17,8,18,9 X19,7,20,6 X12,21,13,22

Gauss Code: {1, -5, 2, -1, -3, 10, -4, 9, 5, -2, 6, -11, 7, 3, -8, 4, -9, 8, -10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 -16 2 20 22 -18 -8 -6 12

Alexander Polynomial: t-3 - 3t-2 + 6t-1 - 7 + 6t - 3t2 + t3

Conway Polynomial: 1 + 3z2 + 3z4 + z6

Other knots with the same Alexander/Conway Polynomial: {810, 10143, ...}

Determinant and Signature: {27, -2}

Jones Polynomial: - 2q-4 + 3q-3 - 3q-2 + 5q-1 - 4 + 4q - 3q2 + 2q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 - 2q-12 + 2q-6 + 2q-4 + q-2 + 2 + q4 - q8 - q12

HOMFLY-PT Polynomial: - 2a-2 - 3a-2z2 - a-2z4 + 4 + 8z2 + 5z4 + z6 - 2a2z2 - a2z4 - a4

Kauffman Polynomial: - 3a-3z + 7a-3z3 - 5a-3z5 + a-3z7 + 2a-2 - 7a-2z2 + 14a-2z4 - 10a-2z6 + 2a-2z8 - 6a-1z + 14a-1z3 - 7a-1z5 - 2a-1z7 + a-1z9 + 4 - 15z2 + 26z4 - 19z6 + 4z8 - 4az + 9az3 - 5az5 - 2az7 + az9 - 8a2z2 + 13a2z4 - 9a2z6 + 2a2z8 + a3z + 2a3z3 - 3a3z5 + a3z7 - a4 + a4z4 + 2a5z

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11106. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9        1
j = 7       1 
j = 5      21 
j = 3     21  
j = 1    22   
j = -1   32    
j = -3  13     
j = -5 22      
j = -7 1       
j = -92        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 106]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 106]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 15, 6, 14], X[7, 16, 8, 17], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[22, 13, 1, 14], X[15, 18, 16, 19], 
 
>   X[17, 8, 18, 9], X[19, 7, 20, 6], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 106]]
Out[4]=   
GaussCode[1, -5, 2, -1, -3, 10, -4, 9, 5, -2, 6, -11, 7, 3, -8, 4, -9, 8, -10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, NonAlternating, 106]]
Out[5]=   
DTCode[4, 10, -14, -16, 2, 20, 22, -18, -8, -6, 12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 106]][t]
Out[6]=   
      -3   3    6            2    3
-7 + t   - -- + - + 6 t - 3 t  + t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 106]][z]
Out[7]=   
       2      4    6
1 + 3 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 10], Knot[10, 143], Knot[11, NonAlternating, 106]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 106]], KnotSignature[Knot[11, NonAlternating, 106]]}
Out[9]=   
{27, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 106]][q]
Out[10]=   
     2    3    3    5            2      3    4
-4 - -- + -- - -- + - + 4 q - 3 q  + 2 q  - q
      4    3    2   q
     q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 106]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 106]][q]
Out[12]=   
     -14    2    2    2     -2    4    8    12
2 - q    - --- + -- + -- + q   + q  - q  - q
            12    6    4
           q     q    q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 106]][a, z]
Out[13]=   
                        2                     4
    2     4      2   3 z       2  2      4   z     2  4    6
4 - -- - a  + 8 z  - ---- - 2 a  z  + 5 z  - -- - a  z  + z
     2                 2                      2
    a                 a                      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 106]][a, z]
Out[14]=   
                                                             2
    2     4   3 z   6 z            3        5         2   7 z       2  2
4 + -- - a  - --- - --- - 4 a z + a  z + 2 a  z - 15 z  - ---- - 8 a  z  + 
     2         3     a                                      2
    a         a                                            a
 
       3       3                                  4                         5
    7 z    14 z         3      3  3       4   14 z        2  4    4  4   5 z
>   ---- + ----- + 9 a z  + 2 a  z  + 26 z  + ----- + 13 a  z  + a  z  - ---- - 
      3      a                                  2                          3
     a                                         a                          a
 
       5                                  6              7      7
    7 z         5      3  5       6   10 z       2  6   z    2 z         7
>   ---- - 5 a z  - 3 a  z  - 19 z  - ----- - 9 a  z  + -- - ---- - 2 a z  + 
     a                                  2                3    a
                                       a                a
 
                      8              9
     3  7      8   2 z       2  8   z       9
>   a  z  + 4 z  + ---- + 2 a  z  + -- + a z
                     2              a
                    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 106]], Vassiliev[3][Knot[11, NonAlternating, 106]]}
Out[15]=   
{3, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 106]][q, t]
Out[16]=   
3    3     2       1       2      2      1     2 t                2      3  2
-- + - + ----- + ----- + ----- + ---- + ---- + --- + 2 q t + 2 q t  + 2 q  t  + 
 3   q    9  3    7  2    5  2    5      3      q
q        q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    5  4    7  4    9  5
>   q  t  + 2 q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n106
K11n105
K11n105
K11n107
K11n107