© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a7
K11a7
K11a9
K11a9
K11a8
Knotscape
This page is passe. Go here instead!

   The Knot K11a8

Visit K11a8's page at Knotilus!

Acknowledgement

K11a8 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X16,8,17,7 X2,9,3,10 X18,11,19,12 X20,13,21,14 X6,16,7,15 X22,17,1,18 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -10, 8, -4, 9, -6, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 16 2 18 20 6 22 14 12

Alexander Polynomial: - 2t-3 + 11t-2 - 27t-1 + 37 - 27t + 11t2 - 2t3

Conway Polynomial: 1 - z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a38, K11a187, K11a249, ...}

Determinant and Signature: {117, 0}

Jones Polynomial: - q-7 + 3q-6 - 6q-5 + 11q-4 - 15q-3 + 18q-2 - 19q-1 + 17 - 13q + 9q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-22 + q-18 - 2q-16 + 3q-14 + 2q-12 - 2q-10 + 3q-8 - 3q-6 - 2 + 4q2 - 3q4 + 2q6 + 2q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2 + a-2z2 + a-2z4 - 2z2 - 2z4 - z6 - 2a2 - 3a2z2 - 2a2z4 - a2z6 + 3a4 + 4a4z2 + 2a4z4 - a6 - a6z2

Kauffman Polynomial: a-4z4 - a-3z3 + 4a-3z5 - a-2 + 4a-2z2 - 9a-2z4 + 9a-2z6 - 2a-1z + 8a-1z3 - 16a-1z5 + 12a-1z7 + 3z2 - 5z4 - 9z6 + 10z8 - 4az + 21az3 - 32az5 + 7az7 + 5az9 + 2a2 - 13a2z2 + 35a2z4 - 45a2z6 + 16a2z8 + a2z10 - 5a3z + 21a3z3 - 13a3z5 - 12a3z7 + 8a3z9 + 3a4 - 20a4z2 + 46a4z4 - 39a4z6 + 9a4z8 + a4z10 - 5a5z + 14a5z3 - 5a5z5 - 6a5z7 + 3a5z9 + a6 - 8a6z2 + 16a6z4 - 12a6z6 + 3a6z8 - 2a7z + 5a7z3 - 4a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         61 
j = 3        73  
j = 1       106   
j = -1      108    
j = -3     89     
j = -5    710      
j = -7   48       
j = -9  27        
j = -11 14         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 8]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 8]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[16, 8, 17, 7], 
 
>   X[2, 9, 3, 10], X[18, 11, 19, 12], X[20, 13, 21, 14], X[6, 16, 7, 15], 
 
>   X[22, 17, 1, 18], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 8]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -10, 8, -4, 9, -6, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 8]]
Out[5]=   
DTCode[4, 8, 10, 16, 2, 18, 20, 6, 22, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 8]][t]
Out[6]=   
     2    11   27              2      3
37 - -- + -- - -- - 27 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 8]][z]
Out[7]=   
     2    4      6
1 - z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 8], Knot[11, Alternating, 38], 
 
>   Knot[11, Alternating, 187], Knot[11, Alternating, 249]}
In[9]:=
{KnotDet[Knot[11, Alternating, 8]], KnotSignature[Knot[11, Alternating, 8]]}
Out[9]=   
{117, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 8]][q]
Out[10]=   
      -7   3    6    11   15   18   19             2      3    4
17 - q   + -- - -- + -- - -- + -- - -- - 13 q + 9 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 8]}
In[12]:=
A2Invariant[Knot[11, Alternating, 8]][q]
Out[12]=   
      -22    -18    2     3     2     2    3    3       2      4      6
-2 - q    + q    - --- + --- + --- - --- + -- - -- + 4 q  - 3 q  + 2 q  + 
                    16    14    12    10    8    6
                   q     q     q     q     q    q
 
       8      10    12
>   2 q  - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 8]][a, z]
Out[13]=   
                                 2                                       4
 -2      2      4    6      2   z       2  2      4  2    6  2      4   z
a   - 2 a  + 3 a  - a  - 2 z  + -- - 3 a  z  + 4 a  z  - a  z  - 2 z  + -- - 
                                 2                                       2
                                a                                       a
 
       2  4      4  4    6    2  6
>   2 a  z  + 2 a  z  - z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 8]][a, z]
Out[14]=   
  -2      2      4    6   2 z              3        5        7        2
-a   + 2 a  + 3 a  + a  - --- - 4 a z - 5 a  z - 5 a  z - 2 a  z + 3 z  + 
                           a
 
       2                                    3      3
    4 z        2  2       4  2      6  2   z    8 z          3       3  3
>   ---- - 13 a  z  - 20 a  z  - 8 a  z  - -- + ---- + 21 a z  + 21 a  z  + 
      2                                     3    a
     a                                     a
 
                                 4      4
        5  3      7  3      4   z    9 z        2  4       4  4       6  4
>   14 a  z  + 5 a  z  - 5 z  + -- - ---- + 35 a  z  + 46 a  z  + 16 a  z  + 
                                 4     2
                                a     a
 
       5       5                                                      6
    4 z    16 z          5       3  5      5  5      7  5      6   9 z
>   ---- - ----- - 32 a z  - 13 a  z  - 5 a  z  - 4 a  z  - 9 z  + ---- - 
      3      a                                                       2
     a                                                              a
 
                                         7
        2  6       4  6       6  6   12 z         7       3  7      5  7
>   45 a  z  - 39 a  z  - 12 a  z  + ----- + 7 a z  - 12 a  z  - 6 a  z  + 
                                       a
 
     7  7       8       2  8      4  8      6  8        9      3  9      5  9
>   a  z  + 10 z  + 16 a  z  + 9 a  z  + 3 a  z  + 5 a z  + 8 a  z  + 3 a  z  + 
 
     2  10    4  10
>   a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 8]], Vassiliev[3][Knot[11, Alternating, 8]]}
Out[15]=   
{-1, -1}
In[16]:=
Kh[Knot[11, Alternating, 8]][q, t]
Out[16]=   
8            1        2        1        4        2       7       4       8
- + 10 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q           15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
           q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      10       8      9     10               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 6 q t + 7 q  t + 3 q  t  + 6 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a8
K11a7
K11a7
K11a9
K11a9