© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a75
K11a75
K11a77
K11a77
K11a76
Knotscape
This page is passe. Go here instead!

   The Knot K11a76

Visit K11a76's page at Knotilus!

Acknowledgement

K11a76 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X18,9,19,10 X2,11,3,12 X20,14,21,13 X8,15,9,16 X22,18,1,17 X6,19,7,20 X16,22,17,21

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -4, 8, -11, 9, -5, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 12 14 18 2 20 8 22 6 16

Alexander Polynomial: t-4 - 6t-3 + 17t-2 - 30t-1 + 37 - 30t + 17t2 - 6t3 + t4

Conway Polynomial: 1 + z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a160, K11a289, ...}

Determinant and Signature: {145, 0}

Jones Polynomial: q-6 - 4q-5 + 9q-4 - 15q-3 + 20q-2 - 23q-1 + 24 - 20q + 15q2 - 9q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a160, K11a289, ...}

A2 (sl(3)) Invariant: q-18 - q-16 + 2q-12 - 4q-10 + 3q-8 - 2q-6 - q-4 + 4q-2 - 3 + 6q2 - 3q4 + q6 + 2q8 - 3q10 + 2q12 - q14

HOMFLY-PT Polynomial: - a-2 - 3a-2z2 - 3a-2z4 - a-2z6 + 4 + 9z2 + 10z4 + 5z6 + z8 - 3a2 - 8a2z2 - 7a2z4 - 2a2z6 + a4 + 2a4z2 + a4z4

Kauffman Polynomial: - a-5z3 + a-5z5 + a-4z2 - 5a-4z4 + 4a-4z6 - a-3z + 6a-3z3 - 12a-3z5 + 8a-3z7 + a-2 - 5a-2z2 + 12a-2z4 - 16a-2z6 + 10a-2z8 - 2a-1z + 10a-1z3 - 11a-1z5 - 2a-1z7 + 7a-1z9 + 4 - 17z2 + 41z4 - 45z6 + 17z8 + 2z10 - 2az + 6az3 + az5 - 19az7 + 13az9 + 3a2 - 15a2z2 + 35a2z4 - 41a2z6 + 14a2z8 + 2a2z10 - 2a3z + 9a3z3 - 10a3z5 - 5a3z7 + 6a3z9 + a4 - 3a4z2 + 9a4z4 - 15a4z6 + 7a4z8 - a5z + 6a5z3 - 9a5z5 + 4a5z7 + a6z2 - 2a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1176. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          3 
j = 7         61 
j = 5        93  
j = 3       116   
j = 1      139    
j = -1     1112     
j = -3    912      
j = -5   611       
j = -7  39        
j = -9 16         
j = -11 3          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 76]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 76]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 7, 15, 8], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[20, 14, 21, 13], X[8, 15, 9, 16], 
 
>   X[22, 18, 1, 17], X[6, 19, 7, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 76]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -4, 8, -11, 9, -5, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 76]]
Out[5]=   
DTCode[4, 10, 12, 14, 18, 2, 20, 8, 22, 6, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 76]][t]
Out[6]=   
      -4   6    17   30              2      3    4
37 + t   - -- + -- - -- - 30 t + 17 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 76]][z]
Out[7]=   
     4      6    8
1 + z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 76], Knot[11, Alternating, 160], 
 
>   Knot[11, Alternating, 289]}
In[9]:=
{KnotDet[Knot[11, Alternating, 76]], KnotSignature[Knot[11, Alternating, 76]]}
Out[9]=   
{145, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 76]][q]
Out[10]=   
      -6   4    9    15   20   23              2      3      4    5
24 + q   - -- + -- - -- + -- - -- - 20 q + 15 q  - 9 q  + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 76], Knot[11, Alternating, 160], 
 
>   Knot[11, Alternating, 289]}
In[12]:=
A2Invariant[Knot[11, Alternating, 76]][q]
Out[12]=   
      -18    -16    2     4    3    2     -4   4       2      4    6      8
-3 + q    - q    + --- - --- + -- - -- - q   + -- + 6 q  - 3 q  + q  + 2 q  - 
                    12    10    8    6          2
                   q     q     q    q          q
 
       10      12    14
>   3 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 76]][a, z]
Out[13]=   
                                2                                  4
     -2      2    4      2   3 z       2  2      4  2       4   3 z
4 - a   - 3 a  + a  + 9 z  - ---- - 8 a  z  + 2 a  z  + 10 z  - ---- - 
                               2                                  2
                              a                                  a
 
                              6
       2  4    4  4      6   z       2  6    8
>   7 a  z  + a  z  + 5 z  - -- - 2 a  z  + z
                              2
                             a
In[14]:=
Kauffman[Knot[11, Alternating, 76]][a, z]
Out[14]=   
                                                                  2      2
     -2      2    4   z    2 z              3      5         2   z    5 z
4 + a   + 3 a  + a  - -- - --- - 2 a z - 2 a  z - a  z - 17 z  + -- - ---- - 
                       3    a                                     4     2
                      a                                          a     a
 
                                  3      3       3
        2  2      4  2    6  2   z    6 z    10 z         3      3  3
>   15 a  z  - 3 a  z  + a  z  - -- + ---- + ----- + 6 a z  + 9 a  z  + 
                                  5     3      a
                                 a     a
 
                         4       4                                   5
       5  3       4   5 z    12 z        2  4      4  4      6  4   z
>   6 a  z  + 41 z  - ---- + ----- + 35 a  z  + 9 a  z  - 2 a  z  + -- - 
                        4      2                                     5
                       a      a                                     a
 
        5       5                                          6       6
    12 z    11 z       5       3  5      5  5       6   4 z    16 z
>   ----- - ----- + a z  - 10 a  z  - 9 a  z  - 45 z  + ---- - ----- - 
      3       a                                           4      2
     a                                                   a      a
 
                                     7      7
        2  6       4  6    6  6   8 z    2 z          7      3  7      5  7
>   41 a  z  - 15 a  z  + a  z  + ---- - ---- - 19 a z  - 5 a  z  + 4 a  z  + 
                                    3     a
                                   a
 
                8                           9
        8   10 z        2  8      4  8   7 z          9      3  9      10
>   17 z  + ----- + 14 a  z  + 7 a  z  + ---- + 13 a z  + 6 a  z  + 2 z   + 
              2                           a
             a
 
       2  10
>   2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 76]], Vassiliev[3][Knot[11, Alternating, 76]]}
Out[15]=   
{0, 1}
In[16]:=
Kh[Knot[11, Alternating, 76]][q, t]
Out[16]=   
12            1        3        1       6       3       9       6      11
-- + 13 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      9      12    11                3        3  2      5  2      5  3
>   ----- + ---- + --- + 9 q t + 11 q  t + 6 q  t  + 9 q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   6 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a76
K11a75
K11a75
K11a77
K11a77