© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a59
K11a59
K11a61
K11a61
K11a60
Knotscape
This page is passe. Go here instead!

   The Knot K11a60

Visit K11a60's page at Knotilus!

Acknowledgement

K11a60 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X16,6,17,5 X10,8,11,7 X2,9,3,10 X18,12,19,11 X20,14,21,13 X6,16,7,15 X22,18,1,17 X12,20,13,19 X14,22,15,21

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -2, 5, -4, 6, -10, 7, -11, 8, -3, 9, -6, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 16 10 2 18 20 6 22 12 14

Alexander Polynomial: - 3t-3 + 12t-2 - 18t-1 + 19 - 18t + 12t2 - 3t3

Conway Polynomial: 1 + 3z2 - 6z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {85, 4}

Jones Polynomial: 1 - 2q + 5q2 - 8q3 + 11q4 - 13q5 + 14q6 - 12q7 + 9q8 - 6q9 + 3q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {K11a220, ...}

A2 (sl(3)) Invariant: 1 + 2q6 - q8 + 3q10 - q12 - q14 + q16 - 3q18 + 2q20 - q22 + q24 + 2q26 - q28 + q30 - q32 - q34

HOMFLY-PT Polynomial: - 2a-10 - a-10z2 + 5a-8 + 9a-8z2 + 3a-8z4 - 5a-6 - 10a-6z2 - 8a-6z4 - 2a-6z6 + 2a-4 + 2a-4z2 - 2a-4z4 - a-4z6 + a-2 + 3a-2z2 + a-2z4

Kauffman Polynomial: a-13z - 2a-13z3 + a-13z5 + 2a-12z2 - 6a-12z4 + 3a-12z6 - 6a-11z5 + 4a-11z7 + 2a-10 - 5a-10z2 + 4a-10z4 - 6a-10z6 + 4a-10z8 + a-9z - a-9z3 + 3a-9z5 - 4a-9z7 + 3a-9z9 + 5a-8 - 22a-8z2 + 37a-8z4 - 22a-8z6 + 5a-8z8 + a-8z10 + 3a-7z - 14a-7z3 + 27a-7z5 - 19a-7z7 + 6a-7z9 + 5a-6 - 25a-6z2 + 39a-6z4 - 23a-6z6 + 4a-6z8 + a-6z10 + a-5z - 8a-5z3 + 11a-5z5 - 9a-5z7 + 3a-5z9 + 2a-4 - 6a-4z2 + 8a-4z4 - 9a-4z6 + 3a-4z8 + 3a-3z3 - 6a-3z5 + 2a-3z7 - a-2 + 4a-2z2 - 4a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 8}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1160. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          2 
j = 19         41 
j = 17        52  
j = 15       74   
j = 13      75    
j = 11     67     
j = 9    57      
j = 7   36       
j = 5  25        
j = 3 14         
j = 1 1          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 60]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 60]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[16, 6, 17, 5], X[10, 8, 11, 7], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], X[6, 16, 7, 15], 
 
>   X[22, 18, 1, 17], X[12, 20, 13, 19], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 60]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -4, 6, -10, 7, -11, 8, -3, 9, -6, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 60]]
Out[5]=   
DTCode[4, 8, 16, 10, 2, 18, 20, 6, 22, 12, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 60]][t]
Out[6]=   
     3    12   18              2      3
19 - -- + -- - -- - 18 t + 12 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 60]][z]
Out[7]=   
       2      4      6
1 + 3 z  - 6 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 60]}
In[9]:=
{KnotDet[Knot[11, Alternating, 60]], KnotSignature[Knot[11, Alternating, 60]]}
Out[9]=   
{85, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 60]][q]
Out[10]=   
             2      3       4       5       6       7      8      9      10
1 - 2 q + 5 q  - 8 q  + 11 q  - 13 q  + 14 q  - 12 q  + 9 q  - 6 q  + 3 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 60], Knot[11, Alternating, 220]}
In[12]:=
A2Invariant[Knot[11, Alternating, 60]][q]
Out[12]=   
       6    8      10    12    14    16      18      20    22    24      26
1 + 2 q  - q  + 3 q   - q   - q   + q   - 3 q   + 2 q   - q   + q   + 2 q   - 
 
     28    30    32    34
>   q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 60]][a, z]
Out[13]=   
                            2       2       2      2      2      4      4
-2    5    5    2     -2   z     9 z    10 z    2 z    3 z    3 z    8 z
--- + -- - -- + -- + a   - --- + ---- - ----- + ---- + ---- + ---- - ---- - 
 10    8    6    4          10     8      6       4      2      8      6
a     a    a    a          a      a      a       a      a      a      a
 
       4    4      6    6
    2 z    z    2 z    z
>   ---- + -- - ---- - --
      4     2     6     4
     a     a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 60]][a, z]
Out[14]=   
                                                    2      2       2       2
 2    5    5    2     -2    z    z    3 z   z    2 z    5 z    22 z    25 z
--- + -- + -- + -- - a   + --- + -- + --- + -- + ---- - ---- - ----- - ----- - 
 10    8    6    4          13    9    7     5    12     10      8       6
a     a    a    a          a     a    a     a    a      a       a       a
 
       2      2      3    3       3      3      3      4      4       4
    6 z    4 z    2 z    z    14 z    8 z    3 z    6 z    4 z    37 z
>   ---- + ---- - ---- - -- - ----- - ---- + ---- - ---- + ---- + ----- + 
      4      2     13     9     7       5      3     12     10      8
     a      a     a      a     a       a      a     a      a       a
 
        4      4      4    5       5      5       5       5      5      6
    39 z    8 z    4 z    z     6 z    3 z    27 z    11 z    6 z    3 z
>   ----- + ---- - ---- + --- - ---- + ---- + ----- + ----- - ---- + ---- - 
      6       4      2     13    11      9      7       5       3     12
     a       a      a     a     a       a      a       a       a     a
 
       6       6       6      6    6      7      7       7      7      7
    6 z    22 z    23 z    9 z    z    4 z    4 z    19 z    9 z    2 z
>   ---- - ----- - ----- - ---- + -- + ---- - ---- - ----- - ---- + ---- + 
     10      8       6       4     2    11      9      7       5      3
    a       a       a       a     a    a       a      a       a      a
 
       8      8      8      8      9      9      9    10    10
    4 z    5 z    4 z    3 z    3 z    6 z    3 z    z     z
>   ---- + ---- + ---- + ---- + ---- + ---- + ---- + --- + ---
     10      8      6      4      9      7      5     8     6
    a       a      a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 60]], Vassiliev[3][Knot[11, Alternating, 60]]}
Out[15]=   
{3, 8}
In[16]:=
Kh[Knot[11, Alternating, 60]][q, t]
Out[16]=   
                          3
   3      5    1     q   q       5        7        7  2      9  2      9  3
4 q  + 2 q  + ---- + - + -- + 5 q  t + 3 q  t + 6 q  t  + 5 q  t  + 7 q  t  + 
                 2   t   t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   6 q   t  + 7 q   t  + 7 q   t  + 5 q   t  + 7 q   t  + 4 q   t  + 
 
       17  6      17  7      19  7    19  8      21  8    23  9
>   5 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a60
K11a59
K11a59
K11a61
K11a61