© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a5
K11a5
K11a7
K11a7
K11a6
Knotscape
This page is passe. Go here instead!

   The Knot K11a6

Visit K11a6's page at Knotilus!

Acknowledgement

K11a6 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X16,8,17,7 X2,9,3,10 X18,12,19,11 X20,13,21,14 X6,16,7,15 X14,18,15,17 X22,20,1,19 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -9, 8, -4, 9, -6, 10, -7, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 10 16 2 18 20 6 14 22 12

Alexander Polynomial: 2t-3 - 13t-2 + 32t-1 - 41 + 32t - 13t2 + 2t3

Conway Polynomial: 1 - 2z2 - z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a132, K11a352, ...}

Determinant and Signature: {135, 2}

Jones Polynomial: q-3 - 3q-2 + 7q-1 - 12 + 18q - 21q2 + 22q3 - 20q4 + 15q5 - 10q6 + 5q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 - q-6 + 3q-4 - 2q-2 - 1 + 4q2 - 3q4 + 4q6 - q8 - q10 + q12 - 5q14 + 4q16 - q18 - q20 + 3q22 - q24

HOMFLY-PT Polynomial: a-6 - a-6z4 - 2a-4 - a-4z2 + a-4z4 + a-4z6 + 2a-2 + a-2z2 + a-2z4 + a-2z6 - 1 - 3z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: a-9z5 - 5a-8z4 + 5a-8z6 + 5a-7z3 - 15a-7z5 + 10a-7z7 - a-6 + 4a-6z2 - 4a-6z4 - 10a-6z6 + 10a-6z8 - 4a-5z + 24a-5z3 - 36a-5z5 + 11a-5z7 + 5a-5z9 - 2a-4 + 4a-4z2 + 13a-4z4 - 34a-4z6 + 18a-4z8 + a-4z10 - 8a-3z + 32a-3z3 - 33a-3z5 + 2a-3z7 + 8a-3z9 - 2a-2 + a-2z2 + 14a-2z4 - 26a-2z6 + 12a-2z8 + a-2z10 - 6a-1z + 20a-1z3 - 21a-1z5 + 4a-1z7 + 3a-1z9 - 1 + 4z2 - z4 - 6z6 + 4z8 - 2az + 7az3 - 8az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          4 
j = 13         61 
j = 11        94  
j = 9       116   
j = 7      119    
j = 5     1011     
j = 3    811      
j = 1   511       
j = -1  27        
j = -3 15         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 6]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 6]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[16, 8, 17, 7], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 13, 21, 14], X[6, 16, 7, 15], 
 
>   X[14, 18, 15, 17], X[22, 20, 1, 19], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 6]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -9, 8, -4, 9, -6, 10, 
 
>   -7, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 6]]
Out[5]=   
DTCode[4, 8, 10, 16, 2, 18, 20, 6, 14, 22, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 6]][t]
Out[6]=   
      2    13   32              2      3
-41 + -- - -- + -- + 32 t - 13 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 6]][z]
Out[7]=   
       2    4      6
1 - 2 z  - z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 6], Knot[11, Alternating, 132], 
 
>   Knot[11, Alternating, 352]}
In[9]:=
{KnotDet[Knot[11, Alternating, 6]], KnotSignature[Knot[11, Alternating, 6]]}
Out[9]=   
{135, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 6]][q]
Out[10]=   
       -3   3    7              2       3       4       5       6      7    8
-12 + q   - -- + - + 18 q - 21 q  + 22 q  - 20 q  + 15 q  - 10 q  + 5 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 6]}
In[12]:=
A2Invariant[Knot[11, Alternating, 6]][q]
Out[12]=   
      -10    -6   3    2       2      4      6    8    10    12      14
-1 + q    - q   + -- - -- + 4 q  - 3 q  + 4 q  - q  - q   + q   - 5 q   + 
                   4    2
                  q    q
 
       16    18    20      22    24
>   4 q   - q   - q   + 3 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 6]][a, z]
Out[13]=   
                                  2    2                   4    4    4    6    6
      -6   2    2     2      2   z    z     2  2      4   z    z    z    z    z
-1 + a   - -- + -- + a  - 3 z  - -- + -- + a  z  - 2 z  - -- + -- + -- + -- + --
            4    2                4    2                   6    4    2    4    2
           a    a                a    a                   a    a    a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 6]][a, z]
Out[14]=   
                                                              2      2    2
      -6   2    2     2   4 z   8 z   6 z              2   4 z    4 z    z
-1 - a   - -- - -- - a  - --- - --- - --- - 2 a z + 4 z  + ---- + ---- + -- + 
            4    2         5     3     a                     6      4     2
           a    a         a     a                           a      a     a
 
                 3       3       3       3                    4      4
       2  2   5 z    24 z    32 z    20 z         3    4   5 z    4 z
>   3 a  z  + ---- + ----- + ----- + ----- + 7 a z  - z  - ---- - ---- + 
                7      5       3       a                     8      6
               a      a       a                             a      a
 
        4       4              5       5       5       5       5
    13 z    14 z       2  4   z    15 z    36 z    33 z    21 z         5
>   ----- + ----- - 3 a  z  + -- - ----- - ----- - ----- - ----- - 8 a z  - 
      4       2                9     7       5       3       a
     a       a                a     a       a       a
 
              6       6       6       6               7       7      7      7
       6   5 z    10 z    34 z    26 z     2  6   10 z    11 z    2 z    4 z
>   6 z  + ---- - ----- - ----- - ----- + a  z  + ----- + ----- + ---- + ---- + 
             8      6       4       2               7       5       3     a
            a      a       a       a               a       a       a
 
                        8       8       8      9      9      9    10    10
         7      8   10 z    18 z    12 z    5 z    8 z    3 z    z     z
>   3 a z  + 4 z  + ----- + ----- + ----- + ---- + ---- + ---- + --- + ---
                      6       4       2       5      3     a      4     2
                     a       a       a       a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 6]], Vassiliev[3][Knot[11, Alternating, 6]]}
Out[15]=   
{-2, -2}
In[16]:=
Kh[Knot[11, Alternating, 6]][q, t]
Out[16]=   
          3     1       2       1       5      2      7    5 q       3
11 q + 8 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 11 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   10 q  t + 11 q  t  + 11 q  t  + 9 q  t  + 11 q  t  + 6 q  t  + 9 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   4 q   t  + 6 q   t  + q   t  + 4 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a6
K11a5
K11a5
K11a7
K11a7