© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a57
K11a57
K11a59
K11a59
K11a58
Knotscape
This page is passe. Go here instead!

   The Knot K11a58

Visit K11a58's page at Knotilus!

Acknowledgement

K11a58 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X16,6,17,5 X2837 X20,9,21,10 X22,11,1,12 X18,13,19,14 X6,16,7,15 X14,17,15,18 X12,19,13,20 X10,21,11,22

Gauss Code: {1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -9, 8, -3, 9, -7, 10, -5, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 8 16 2 20 22 18 6 14 12 10

Alexander Polynomial: - 2t-3 + 9t-2 - 18t-1 + 23 - 18t + 9t2 - 2t3

Conway Polynomial: 1 - 3z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1087, 1098, K11a165, K11n72, ...}

Determinant and Signature: {81, 0}

Jones Polynomial: q-6 - 3q-5 + 6q-4 - 9q-3 + 11q-2 - 13q-1 + 13 - 10q + 8q2 - 4q3 + 2q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-18 - q-16 + q-14 + q-12 - 2q-10 + 2q-8 - 2q-6 - q-4 - 2 + 3q2 + 3q6 + 3q8 - q10 - q14 - q16

HOMFLY-PT Polynomial: - 2a-4 - a-4z2 + 5a-2 + 6a-2z2 + 2a-2z4 - 2 - 4z2 - 3z4 - z6 - a2 - 3a2z2 - 3a2z4 - a2z6 + a4 + 2a4z2 + a4z4

Kauffman Polynomial: 2a-5z - 3a-5z3 + a-5z5 - 2a-4 + 4a-4z2 - 5a-4z4 + 2a-4z6 + 4a-3z - 5a-3z3 - a-3z5 + 2a-3z7 - 5a-2 + 9a-2z2 - 6a-2z4 + 2a-2z8 + 5a-1z - 8a-1z3 + 7a-1z5 - 3a-1z7 + 2a-1z9 - 2 + 2z2 + 4z4 - 3z6 + z8 + z10 + 5az - 14az3 + 20az5 - 14az7 + 5az9 + a2 - 8a2z2 + 15a2z4 - 13a2z6 + 3a2z8 + a2z10 + a3z - 2a3z3 + 2a3z5 - 6a3z7 + 3a3z9 + a4 - 3a4z2 + 7a4z4 - 11a4z6 + 4a4z8 - a5z + 6a5z3 - 9a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1158. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          1 
j = 7         31 
j = 5        51  
j = 3       53   
j = 1      85    
j = -1     66     
j = -3    57      
j = -5   46       
j = -7  25        
j = -9 14         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 58]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 58]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[16, 6, 17, 5], X[2, 8, 3, 7], 
 
>   X[20, 9, 21, 10], X[22, 11, 1, 12], X[18, 13, 19, 14], X[6, 16, 7, 15], 
 
>   X[14, 17, 15, 18], X[12, 19, 13, 20], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 58]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -9, 8, -3, 9, -7, 10, 
 
>   -5, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 58]]
Out[5]=   
DTCode[4, 8, 16, 2, 20, 22, 18, 6, 14, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 58]][t]
Out[6]=   
     2    9    18             2      3
23 - -- + -- - -- - 18 t + 9 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 58]][z]
Out[7]=   
       4      6
1 - 3 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58], 
 
>   Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]}
In[9]:=
{KnotDet[Knot[11, Alternating, 58]], KnotSignature[Knot[11, Alternating, 58]]}
Out[9]=   
{81, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 58]][q]
Out[10]=   
      -6   3    6    9    11   13             2      3      4    5
13 + q   - -- + -- - -- + -- - -- - 10 q + 8 q  - 4 q  + 2 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 58]}
In[12]:=
A2Invariant[Knot[11, Alternating, 58]][q]
Out[12]=   
      -18    -16    -14    -12    2    2    2     -4      2      6      8
-2 + q    - q    + q    + q    - --- + -- - -- - q   + 3 q  + 3 q  + 3 q  - 
                                  10    8    6
                                 q     q    q
 
     10    14    16
>   q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 58]][a, z]
Out[13]=   
                                 2      2                                 4
     2    5     2    4      2   z    6 z       2  2      4  2      4   2 z
-2 - -- + -- - a  + a  - 4 z  - -- + ---- - 3 a  z  + 2 a  z  - 3 z  + ---- - 
      4    2                     4     2                                 2
     a    a                     a     a                                 a
 
       2  4    4  4    6    2  6
>   3 a  z  + a  z  - z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 58]][a, z]
Out[14]=   
                                                                           2
     2    5     2    4   2 z   4 z   5 z            3      5        2   4 z
-2 - -- - -- + a  + a  + --- + --- + --- + 5 a z + a  z - a  z + 2 z  + ---- + 
      4    2              5     3     a                                   4
     a    a              a     a                                         a
 
       2                                    3      3      3
    9 z       2  2      4  2      6  2   3 z    5 z    8 z          3
>   ---- - 8 a  z  - 3 a  z  + 2 a  z  - ---- - ---- - ---- - 14 a z  - 
      2                                    5      3     a
     a                                    a      a
 
                                  4      4
       3  3      5  3      4   5 z    6 z        2  4      4  4      6  4
>   2 a  z  + 6 a  z  + 4 z  - ---- - ---- + 15 a  z  + 7 a  z  - 3 a  z  + 
                                 4      2
                                a      a
 
     5    5      5                                           6
    z    z    7 z          5      3  5      5  5      6   2 z        2  6
>   -- - -- + ---- + 20 a z  + 2 a  z  - 9 a  z  - 3 z  + ---- - 13 a  z  - 
     5    3    a                                            4
    a    a                                                 a
 
                          7      7                                         8
        4  6    6  6   2 z    3 z          7      3  7      5  7    8   2 z
>   11 a  z  + a  z  + ---- - ---- - 14 a z  - 6 a  z  + 3 a  z  + z  + ---- + 
                         3     a                                          2
                        a                                                a
 
                           9
       2  8      4  8   2 z         9      3  9    10    2  10
>   3 a  z  + 4 a  z  + ---- + 5 a z  + 3 a  z  + z   + a  z
                         a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 58]], Vassiliev[3][Knot[11, Alternating, 58]]}
Out[15]=   
{0, 3}
In[16]:=
Kh[Knot[11, Alternating, 58]][q, t]
Out[16]=   
6           1        2        1       4       2       5       4       6
- + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q          13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
          q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      5      7      6               3        3  2      5  2    5  3      7  3
>   ----- + ---- + --- + 5 q t + 5 q  t + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
     7  4    9  4    11  5
>   q  t  + q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a58
K11a57
K11a57
K11a59
K11a59