© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a50
K11a50
K11a52
K11a52
K11a51
Knotscape
This page is passe. Go here instead!

   The Knot K11a51

Visit K11a51's page at Knotilus!

Acknowledgement

K11a51 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X14,5,15,6 X10,8,11,7 X2,9,3,10 X20,11,21,12 X16,13,17,14 X6,15,7,16 X22,18,1,17 X12,19,13,20 X18,22,19,21

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -2, 5, -4, 6, -10, 7, -3, 8, -7, 9, -11, 10, -6, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 14 10 2 20 16 6 22 12 18

Alexander Polynomial: t-3 - 9t-2 + 28t-1 - 39 + 28t - 9t2 + t3

Conway Polynomial: 1 + z2 - 3z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {115, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 12q-5 - 16q-4 + 19q-3 - 18q-2 + 16q-1 - 12 + 7q - 3q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a3, K11a331, ...}

A2 (sl(3)) Invariant: - q-26 - q-24 + 2q-22 - q-20 - q-18 + 4q-16 - 3q-14 + q-12 + q-10 - q-8 + 4q-6 - 3q-4 + 3q-2 - 1 - 3q2 + 3q4 - q6 + q10

HOMFLY-PT Polynomial: a-2 + a-2z2 - 2 - 3z2 - 2z4 + 3a2 + 4a2z2 + 2a2z4 + a2z6 - 2a4 - 4a4z2 - 3a4z4 + 2a6 + 3a6z2 - a8

Kauffman Polynomial: - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 - 2a-1z + 7a-1z3 - 8a-1z5 + 3a-1z7 - 2 + 7z2 - 3z4 - 6z6 + 4z8 - 4az + 13az3 - 16az5 + 2az7 + 3az9 - 3a2 + 10a2z2 - 5a2z4 - 13a2z6 + 8a2z8 + a2z10 - 4a3z + 16a3z3 - 20a3z5 + a3z7 + 6a3z9 - 2a4 + 10a4z2 - 6a4z4 - 11a4z6 + 9a4z8 + a4z10 - 4a5z + 16a5z3 - 20a5z5 + 7a5z7 + 3a5z9 - 2a6 + 7a6z2 - 6a6z4 - 2a6z6 + 5a6z8 - a7z + 4a7z3 - 7a7z5 + 5a7z7 - a8 + 3a8z2 - 5a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1151. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          2 
j = 3         51 
j = 1        72  
j = -1       95   
j = -3      108    
j = -5     98     
j = -7    710      
j = -9   59       
j = -11  27        
j = -13 15         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 51]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 51]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[14, 5, 15, 6], X[10, 8, 11, 7], 
 
>   X[2, 9, 3, 10], X[20, 11, 21, 12], X[16, 13, 17, 14], X[6, 15, 7, 16], 
 
>   X[22, 18, 1, 17], X[12, 19, 13, 20], X[18, 22, 19, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 51]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -4, 6, -10, 7, -3, 8, -7, 9, -11, 10, 
 
>   -6, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 51]]
Out[5]=   
DTCode[4, 8, 14, 10, 2, 20, 16, 6, 22, 12, 18]
In[6]:=
alex = Alexander[Knot[11, Alternating, 51]][t]
Out[6]=   
       -3   9    28             2    3
-39 + t   - -- + -- + 28 t - 9 t  + t
             2   t
            t
In[7]:=
Conway[Knot[11, Alternating, 51]][z]
Out[7]=   
     2      4    6
1 + z  - 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 51]}
In[9]:=
{KnotDet[Knot[11, Alternating, 51]], KnotSignature[Knot[11, Alternating, 51]]}
Out[9]=   
{115, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 51]][q]
Out[10]=   
       -8   3    7    12   16   19   18   16            2    3
-12 - q   + -- - -- + -- - -- + -- - -- + -- + 7 q - 3 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 3], Knot[11, Alternating, 51], 
 
>   Knot[11, Alternating, 331]}
In[12]:=
A2Invariant[Knot[11, Alternating, 51]][q]
Out[12]=   
      -26    -24    2     -20    -18    4     3     -12    -10    -8   4
-1 - q    - q    + --- - q    - q    + --- - --- + q    + q    - q   + -- - 
                    22                  16    14                        6
                   q                   q     q                         q
 
    3    3       2      4    6    10
>   -- + -- - 3 q  + 3 q  - q  + q
     4    2
    q    q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 51]][a, z]
Out[13]=   
                                             2
      -2      2      4      6    8      2   z       2  2      4  2      6  2
-2 + a   + 3 a  - 2 a  + 2 a  - a  - 3 z  + -- + 4 a  z  - 4 a  z  + 3 a  z  - 
                                             2
                                            a
 
       4      2  4      4  4    2  6
>   2 z  + 2 a  z  - 3 a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 51]][a, z]
Out[14]=   
      -2      2      4      6    8   2 z              3        5      7
-2 - a   - 3 a  - 2 a  - 2 a  - a  - --- - 4 a z - 4 a  z - 4 a  z - a  z + 
                                      a
 
                     2                                                3
     9        2   3 z        2  2       4  2      6  2      8  2   7 z
>   a  z + 7 z  + ---- + 10 a  z  + 10 a  z  + 7 a  z  + 3 a  z  + ---- + 
                    2                                               a
                   a
 
                                                                  4
          3       3  3       5  3      7  3      9  3      4   3 z       2  4
>   13 a z  + 16 a  z  + 16 a  z  + 4 a  z  - 2 a  z  - 3 z  - ---- - 5 a  z  - 
                                                                 2
                                                                a
 
                                     5
       4  4      6  4      8  4   8 z          5       3  5       5  5
>   6 a  z  - 6 a  z  - 5 a  z  - ---- - 16 a z  - 20 a  z  - 20 a  z  - 
                                   a
 
                              6
       7  5    9  5      6   z        2  6       4  6      6  6      8  6
>   7 a  z  + a  z  - 6 z  + -- - 13 a  z  - 11 a  z  - 2 a  z  + 3 a  z  + 
                              2
                             a
 
       7
    3 z         7    3  7      5  7      7  7      8      2  8      4  8
>   ---- + 2 a z  + a  z  + 7 a  z  + 5 a  z  + 4 z  + 8 a  z  + 9 a  z  + 
     a
 
       6  8        9      3  9      5  9    2  10    4  10
>   5 a  z  + 3 a z  + 6 a  z  + 3 a  z  + a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 51]], Vassiliev[3][Knot[11, Alternating, 51]]}
Out[15]=   
{1, -4}
In[16]:=
Kh[Knot[11, Alternating, 51]][q, t]
Out[16]=   
8    9     1        2        1        5        2        7        5       9
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10       9      8      10    5 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 7 q t + 2 q t  + 5 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a51
K11a50
K11a50
K11a52
K11a52