© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a45
K11a45
K11a47
K11a47
K11a46
Knotscape
This page is passe. Go here instead!

   The Knot K11a46

Visit K11a46's page at Knotilus!

Acknowledgement

K11a46 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X14,5,15,6 X2837 X20,10,21,9 X18,11,19,12 X16,13,17,14 X6,15,7,16 X12,17,13,18 X22,20,1,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -7, 9, -6, 10, -5, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 20 18 16 6 12 22 10

Alexander Polynomial: 2t-3 - 9t-2 + 20t-1 - 25 + 20t - 9t2 + 2t3

Conway Polynomial: 1 + 2z2 + 3z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {1084, K11n184, ...}

Determinant and Signature: {87, 2}

Jones Polynomial: - q-4 + 3q-3 - 6q-2 + 9q-1 - 11 + 14q - 13q2 + 12q3 - 9q4 + 5q5 - 3q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + q-10 - q-8 - q-6 + 2q-4 - 2q-2 + 2 + 2q2 + q4 + 4q6 - q8 + q10 - 2q12 - 3q14 + q16 - q18 + q22

HOMFLY-PT Polynomial: a-6 + a-6z2 - 4a-4 - 5a-4z2 - 2a-4z4 + 4a-2 + 5a-2z2 + 3a-2z4 + a-2z6 + 1 + 3z2 + 3z4 + z6 - a2 - 2a2z2 - a2z4

Kauffman Polynomial: - a-8z2 + a-8z4 + 2a-7z - 4a-7z3 + 3a-7z5 - a-6 + a-6z2 - 3a-6z4 + 4a-6z6 + 6a-5z - 9a-5z3 + a-5z5 + 4a-5z7 - 4a-4 + 8a-4z2 - 7a-4z4 - a-4z6 + 4a-4z8 + 4a-3z - 2a-3z3 - 4a-3z5 - a-3z7 + 3a-3z9 - 4a-2 + 3a-2z2 + 12a-2z4 - 20a-2z6 + 6a-2z8 + a-2z10 - 2a-1z + 8a-1z3 + a-1z5 - 14a-1z7 + 6a-1z9 + 1 - 9z2 + 29z4 - 27z6 + 5z8 + z10 - 4az + 10az3 - az5 - 8az7 + 3az9 + a2 - 6a2z2 + 14a2z4 - 12a2z6 + 3a2z8 - 2a3z + 5a3z3 - 4a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          2 
j = 11         31 
j = 9        62  
j = 7       63   
j = 5      76    
j = 3     76     
j = 1    58      
j = -1   46       
j = -3  25        
j = -5 14         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 46]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 46]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[18, 11, 19, 12], X[16, 13, 17, 14], X[6, 15, 7, 16], 
 
>   X[12, 17, 13, 18], X[22, 20, 1, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 46]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -7, 9, -6, 10, 
 
>   -5, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 46]]
Out[5]=   
DTCode[4, 8, 14, 2, 20, 18, 16, 6, 12, 22, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 46]][t]
Out[6]=   
      2    9    20             2      3
-25 + -- - -- + -- + 20 t - 9 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 46]][z]
Out[7]=   
       2      4      6
1 + 2 z  + 3 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 84], Knot[11, Alternating, 46], Knot[11, NonAlternating, 184]}
In[9]:=
{KnotDet[Knot[11, Alternating, 46]], KnotSignature[Knot[11, Alternating, 46]]}
Out[9]=   
{87, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 46]][q]
Out[10]=   
       -4   3    6    9              2       3      4      5      6    7
-11 - q   + -- - -- + - + 14 q - 13 q  + 12 q  - 9 q  + 5 q  - 3 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 46]}
In[12]:=
A2Invariant[Knot[11, Alternating, 46]][q]
Out[12]=   
     -12    -10    -8    -6   2    2       2    4      6    8    10      12
2 - q    + q    - q   - q   + -- - -- + 2 q  + q  + 4 q  - q  + q   - 2 q   - 
                               4    2
                              q    q
 
       14    16    18    22
>   3 q   + q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 46]][a, z]
Out[13]=   
                                 2      2      2                       4
     -6   4    4     2      2   z    5 z    5 z       2  2      4   2 z
1 + a   - -- + -- - a  + 3 z  + -- - ---- + ---- - 2 a  z  + 3 z  - ---- + 
           4    2                6     4      2                       4
          a    a                a     a      a                       a
 
       4                 6
    3 z     2  4    6   z
>   ---- - a  z  + z  + --
      2                  2
     a                  a
In[14]:=
Kauffman[Knot[11, Alternating, 46]][a, z]
Out[14]=   
                                                                          2
     -6   4    4     2   2 z   6 z   4 z   2 z              3        2   z
1 - a   - -- - -- + a  + --- + --- + --- - --- - 4 a z - 2 a  z - 9 z  - -- + 
           4    2         7     5     3     a                             8
          a    a         a     a     a                                   a
 
     2      2      2                3      3      3      3
    z    8 z    3 z       2  2   4 z    9 z    2 z    8 z          3
>   -- + ---- + ---- - 6 a  z  - ---- - ---- - ---- + ---- + 10 a z  + 
     6     4      2                7      5      3     a
    a     a      a                a      a      a
 
                       4      4      4       4                 5    5      5
       3  3       4   z    3 z    7 z    12 z        2  4   3 z    z    4 z
>   5 a  z  + 29 z  + -- - ---- - ---- + ----- + 14 a  z  + ---- + -- - ---- + 
                       8     6      4      2                  7     5     3
                      a     a      a      a                  a     a     a
 
     5                               6    6       6                 7    7
    z       5      3  5       6   4 z    z    20 z        2  6   4 z    z
>   -- - a z  - 4 a  z  - 27 z  + ---- - -- - ----- - 12 a  z  + ---- - -- - 
    a                               6     4     2                  5     3
                                   a     a     a                  a     a
 
        7                              8      8                9      9
    14 z         7    3  7      8   4 z    6 z       2  8   3 z    6 z
>   ----- - 8 a z  + a  z  + 5 z  + ---- + ---- + 3 a  z  + ---- + ---- + 
      a                               4      2                3     a
                                     a      a                a
 
                    10
         9    10   z
>   3 a z  + z   + ---
                    2
                   a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 46]], Vassiliev[3][Knot[11, Alternating, 46]]}
Out[15]=   
{2, 0}
In[16]:=
Kh[Knot[11, Alternating, 46]][q, t]
Out[16]=   
         3     1       2       1       4       2       5      4      6    5 q
8 q + 7 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              9  5    7  4    5  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q  t    q  t    q t
 
       3        5        5  2      7  2      7  3      9  3      9  4
>   6 q  t + 7 q  t + 6 q  t  + 6 q  t  + 3 q  t  + 6 q  t  + 2 q  t  + 
 
       11  4    11  5      13  5    15  6
>   3 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a46
K11a45
K11a45
K11a47
K11a47