© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a341
K11a341
K11a343
K11a343
K11a342
Knotscape
This page is passe. Go here instead!

   The Knot K11a342

Visit K11a342's page at Knotilus!

Acknowledgement

K11a342 as Morse Link
DrawMorseLink

PD Presentation: X6271 X14,4,15,3 X16,6,17,5 X22,8,1,7 X20,10,21,9 X18,12,19,11 X2,14,3,13 X4,16,5,15 X12,18,13,17 X10,20,11,19 X8,22,9,21

Gauss Code: {1, -7, 2, -8, 3, -1, 4, -11, 5, -10, 6, -9, 7, -2, 8, -3, 9, -6, 10, -5, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 14 16 22 20 18 2 4 12 10 8

Alexander Polynomial: 4t-2 - 7t-1 + 7 - 7t + 4t2

Conway Polynomial: 1 + 9z2 + 4z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {29, 4}

Jones Polynomial: q2 - q3 + 2q4 - 3q5 + 4q6 - 4q7 + 4q8 - 3q9 + 3q10 - 2q11 + q12 - q13

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q6 + q10 + q16 + q26 + q28 + q30 + q32 - q34 - q36 - q38 - q40

HOMFLY-PT Polynomial: - 2a-12 - a-12z2 + 2a-10 + 3a-10z2 + a-10z4 + 2a-8z2 + a-8z4 + 2a-6z2 + a-6z4 + a-4 + 3a-4z2 + a-4z4

Kauffman Polynomial: - 4a-15z + 10a-15z3 - 6a-15z5 + a-15z7 - a-14z2 + 6a-14z4 - 5a-14z6 + a-14z8 + a-13z - 4a-13z3 + 7a-13z5 - 5a-13z7 + a-13z9 - 2a-12 + 16a-12z2 - 29a-12z4 + 20a-12z6 - 7a-12z8 + a-12z10 + 5a-11z - 24a-11z3 + 26a-11z5 - 12a-11z7 + 2a-11z9 - 2a-10 + 13a-10z2 - 26a-10z4 + 20a-10z6 - 7a-10z8 + a-10z10 - 4a-9z3 + 9a-9z5 - 5a-9z7 + a-9z9 + 6a-8z4 - 4a-8z6 + a-8z8 + 4a-7z3 - 3a-7z5 + a-7z7 + a-6z2 - 2a-6z4 + a-6z6 - 2a-5z3 + a-5z5 + a-4 - 3a-4z2 + a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {9, 29}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11342. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 27           1
j = 25            
j = 23         21 
j = 21        1   
j = 19       22   
j = 17      21    
j = 15     22     
j = 13    22      
j = 11   12       
j = 9  12        
j = 7  1         
j = 511          
j = 31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 342]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 342]]
Out[3]=   
PD[X[6, 2, 7, 1], X[14, 4, 15, 3], X[16, 6, 17, 5], X[22, 8, 1, 7], 
 
>   X[20, 10, 21, 9], X[18, 12, 19, 11], X[2, 14, 3, 13], X[4, 16, 5, 15], 
 
>   X[12, 18, 13, 17], X[10, 20, 11, 19], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 342]]
Out[4]=   
GaussCode[1, -7, 2, -8, 3, -1, 4, -11, 5, -10, 6, -9, 7, -2, 8, -3, 9, -6, 10, 
 
>   -5, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 342]]
Out[5]=   
DTCode[6, 14, 16, 22, 20, 18, 2, 4, 12, 10, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 342]][t]
Out[6]=   
    4    7            2
7 + -- - - - 7 t + 4 t
     2   t
    t
In[7]:=
Conway[Knot[11, Alternating, 342]][z]
Out[7]=   
       2      4
1 + 9 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 342]}
In[9]:=
{KnotDet[Knot[11, Alternating, 342]], KnotSignature[Knot[11, Alternating, 342]]}
Out[9]=   
{29, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 342]][q]
Out[10]=   
 2    3      4      5      6      7      8      9      10      11    12    13
q  - q  + 2 q  - 3 q  + 4 q  - 4 q  + 4 q  - 3 q  + 3 q   - 2 q   + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 342]}
In[12]:=
A2Invariant[Knot[11, Alternating, 342]][q]
Out[12]=   
 6    10    16    26    28    30    32    34    36    38    40
q  + q   + q   + q   + q   + q   + q   - q   - q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 342]][a, z]
Out[13]=   
                   2       2      2      2      2    4     4    4    4
-2     2     -4   z     3 z    2 z    2 z    3 z    z     z    z    z
--- + --- + a   - --- + ---- + ---- + ---- + ---- + --- + -- + -- + --
 12    10          12    10      8      6      4     10    8    6    4
a     a           a     a       a      a      a     a     a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 342]][a, z]
Out[14]=   
                                     2        2       2    2      2       3
-2     2     -4   4 z    z    5 z   z     16 z    13 z    z    3 z    10 z
--- - --- + a   - --- + --- + --- - --- + ----- + ----- + -- - ---- + ----- - 
 12    10          15    13    11    14     12      10     6     4      15
a     a           a     a     a     a      a       a      a     a      a
 
       3       3      3      3      3      4       4       4      4      4
    4 z    24 z    4 z    4 z    2 z    6 z    29 z    26 z    6 z    2 z
>   ---- - ----- - ---- + ---- - ---- + ---- - ----- - ----- + ---- - ---- + 
     13      11      9      7      5     14      12      10      8      6
    a       a       a      a      a     a       a       a       a      a
 
     4      5      5       5      5      5    5      6       6       6      6
    z    6 z    7 z    26 z    9 z    3 z    z    5 z    20 z    20 z    4 z
>   -- - ---- + ---- + ----- + ---- - ---- + -- - ---- + ----- + ----- - ---- + 
     4    15     13      11      9      7     5    14      12      10      8
    a    a      a       a       a      a     a    a       a       a       a
 
     6    7       7       7      7    7    8       8      8    8    9       9
    z    z     5 z    12 z    5 z    z    z     7 z    7 z    z    z     2 z
>   -- + --- - ---- - ----- - ---- + -- + --- - ---- - ---- + -- + --- + ---- + 
     6    15    13      11      9     7    14    12     10     8    13    11
    a    a     a       a       a     a    a     a      a      a    a     a
 
     9    10    10
    z    z     z
>   -- + --- + ---
     9    12    10
    a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 342]], Vassiliev[3][Knot[11, Alternating, 342]]}
Out[15]=   
{9, 29}
In[16]:=
Kh[Knot[11, Alternating, 342]][q, t]
Out[16]=   
 3    5    5      7  2    9  2      9  3    11  3      11  4      13  4
q  + q  + q  t + q  t  + q  t  + 2 q  t  + q   t  + 2 q   t  + 2 q   t  + 
 
       13  5      15  5      15  6      17  6    17  7      19  7      19  8
>   2 q   t  + 2 q   t  + 2 q   t  + 2 q   t  + q   t  + 2 q   t  + 2 q   t  + 
 
     21  8      23  9    23  10    27  11
>   q   t  + 2 q   t  + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a342
K11a341
K11a341
K11a343
K11a343