© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a330
K11a330
K11a332
K11a332
K11a331
Knotscape
This page is passe. Go here instead!

   The Knot K11a331

Visit K11a331's page at Knotilus!

Acknowledgement

K11a331 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X18,5,19,6 X22,8,1,7 X16,9,17,10 X4,12,5,11 X20,13,21,14 X10,15,11,16 X8,17,9,18 X2,19,3,20 X14,21,15,22

Gauss Code: {1, -10, 2, -6, 3, -1, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -3, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 12 18 22 16 4 20 10 8 2 14

Alexander Polynomial: 2t-3 - 11t-2 + 27t-1 - 35 + 27t - 11t2 + 2t3

Conway Polynomial: 1 + z2 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {10121, K11a41, K11a183, K11a198, ...}

Determinant and Signature: {115, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 12q-5 - 16q-4 + 19q-3 - 18q-2 + 16q-1 - 12 + 7q - 3q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a3, K11a51, ...}

A2 (sl(3)) Invariant: - q-24 + q-22 - 2q-20 - 2q-18 + 4q-16 - 2q-14 + 3q-12 + 2q-10 - q-8 + 3q-6 - 4q-4 + 2q-2 - 1 - 2q2 + 3q4 - q6 + q10

HOMFLY-PT Polynomial: a-2 + a-2z2 - 1 - 3z2 - 2z4 - a2 - a2z2 + a2z4 + a2z6 + 4a4 + 6a4z2 + 3a4z4 + a4z6 - 2a6 - 2a6z2 - a6z4

Kauffman Polynomial: - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 - a-1z + 6a-1z3 - 8a-1z5 + 3a-1z7 - 1 + 6z2 - 4z4 - 6z6 + 4z8 - 2az3 - az5 - 5az7 + 4az9 + a2 - 5a2z2 + 7a2z4 - 11a2z6 + 3a2z8 + 2a2z10 + a3z - 14a3z3 + 28a3z5 - 25a3z7 + 10a3z9 + 4a4 - 20a4z2 + 39a4z4 - 28a4z6 + 7a4z8 + 2a4z10 - 3a5z + 6a5z3 + 7a5z5 - 11a5z7 + 6a5z9 + 2a6 - 12a6z2 + 26a6z4 - 21a6z6 + 8a6z8 - 3a7z + 10a7z3 - 13a7z5 + 6a7z7 - 5a8z4 + 3a8z6 - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11331. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          2 
j = 3         51 
j = 1        72  
j = -1       95   
j = -3      108    
j = -5     98     
j = -7    710      
j = -9   59       
j = -11  27        
j = -13 15         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 331]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 331]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[18, 5, 19, 6], X[22, 8, 1, 7], 
 
>   X[16, 9, 17, 10], X[4, 12, 5, 11], X[20, 13, 21, 14], X[10, 15, 11, 16], 
 
>   X[8, 17, 9, 18], X[2, 19, 3, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 331]]
Out[4]=   
GaussCode[1, -10, 2, -6, 3, -1, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -3, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 331]]
Out[5]=   
DTCode[6, 12, 18, 22, 16, 4, 20, 10, 8, 2, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 331]][t]
Out[6]=   
      2    11   27              2      3
-35 + -- - -- + -- + 27 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 331]][z]
Out[7]=   
     2    4      6
1 + z  + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183], 
 
>   Knot[11, Alternating, 198], Knot[11, Alternating, 331]}
In[9]:=
{KnotDet[Knot[11, Alternating, 331]], KnotSignature[Knot[11, Alternating, 331]]}
Out[9]=   
{115, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 331]][q]
Out[10]=   
       -8   3    7    12   16   19   18   16            2    3
-12 - q   + -- - -- + -- - -- + -- - -- + -- + 7 q - 3 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 3], Knot[11, Alternating, 51], 
 
>   Knot[11, Alternating, 331]}
In[12]:=
A2Invariant[Knot[11, Alternating, 331]][q]
Out[12]=   
      -24    -22    2     2     4     2     3     2     -8   3    4    2
-1 - q    + q    - --- - --- + --- - --- + --- + --- - q   + -- - -- + -- - 
                    20    18    16    14    12    10          6    4    2
                   q     q     q     q     q     q           q    q    q
 
       2      4    6    10
>   2 q  + 3 q  - q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 331]][a, z]
Out[13]=   
                                      2
      -2    2      4      6      2   z     2  2      4  2      6  2      4
-1 + a   - a  + 4 a  - 2 a  - 3 z  + -- - a  z  + 6 a  z  - 2 a  z  - 2 z  + 
                                      2
                                     a
 
     2  4      4  4    6  4    2  6    4  6
>   a  z  + 3 a  z  - a  z  + a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 331]][a, z]
Out[14]=   
                                                                     2
      -2    2      4      6   z    3        5        7        2   3 z
-1 - a   + a  + 4 a  + 2 a  - - + a  z - 3 a  z - 3 a  z + 6 z  + ---- - 
                              a                                     2
                                                                   a
 
                                       3
       2  2       4  2       6  2   6 z         3       3  3      5  3
>   5 a  z  - 20 a  z  - 12 a  z  + ---- - 2 a z  - 14 a  z  + 6 a  z  + 
                                     a
 
                                   4
        7  3      9  3      4   3 z       2  4       4  4       6  4
>   10 a  z  - 2 a  z  - 4 z  - ---- + 7 a  z  + 39 a  z  + 26 a  z  - 
                                  2
                                 a
 
                 5                                                          6
       8  4   8 z       5       3  5      5  5       7  5    9  5      6   z
>   5 a  z  - ---- - a z  + 28 a  z  + 7 a  z  - 13 a  z  + a  z  - 6 z  + -- - 
               a                                                            2
                                                                           a
 
                                                  7
        2  6       4  6       6  6      8  6   3 z         7       3  7
>   11 a  z  - 28 a  z  - 21 a  z  + 3 a  z  + ---- - 5 a z  - 25 a  z  - 
                                                a
 
        5  7      7  7      8      2  8      4  8      6  8        9
>   11 a  z  + 6 a  z  + 4 z  + 3 a  z  + 7 a  z  + 8 a  z  + 4 a z  + 
 
        3  9      5  9      2  10      4  10
>   10 a  z  + 6 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 331]], Vassiliev[3][Knot[11, Alternating, 331]]}
Out[15]=   
{1, -4}
In[16]:=
Kh[Knot[11, Alternating, 331]][q, t]
Out[16]=   
8    9     1        2        1        5        2        7        5       9
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10       9      8      10    5 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 7 q t + 2 q t  + 5 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a331
K11a330
K11a330
K11a332
K11a332