In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Show[DrawMorseLink[Knot[11, Alternating, 331]]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | PD[Knot[11, Alternating, 331]] |
Out[3]= | PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[18, 5, 19, 6], X[22, 8, 1, 7],
> X[16, 9, 17, 10], X[4, 12, 5, 11], X[20, 13, 21, 14], X[10, 15, 11, 16],
> X[8, 17, 9, 18], X[2, 19, 3, 20], X[14, 21, 15, 22]] |
In[4]:= | GaussCode[Knot[11, Alternating, 331]] |
Out[4]= | GaussCode[1, -10, 2, -6, 3, -1, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -3, 10,
> -7, 11, -4] |
In[5]:= | DTCode[Knot[11, Alternating, 331]] |
Out[5]= | DTCode[6, 12, 18, 22, 16, 4, 20, 10, 8, 2, 14] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 331]][t] |
Out[6]= | 2 11 27 2 3
-35 + -- - -- + -- + 27 t - 11 t + 2 t
3 2 t
t t |
In[7]:= | Conway[Knot[11, Alternating, 331]][z] |
Out[7]= | 2 4 6
1 + z + z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183],
> Knot[11, Alternating, 198], Knot[11, Alternating, 331]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 331]], KnotSignature[Knot[11, Alternating, 331]]} |
Out[9]= | {115, -2} |
In[10]:= | J=Jones[Knot[11, Alternating, 331]][q] |
Out[10]= | -8 3 7 12 16 19 18 16 2 3
-12 - q + -- - -- + -- - -- + -- - -- + -- + 7 q - 3 q + q
7 6 5 4 3 2 q
q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 3], Knot[11, Alternating, 51],
> Knot[11, Alternating, 331]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 331]][q] |
Out[12]= | -24 -22 2 2 4 2 3 2 -8 3 4 2
-1 - q + q - --- - --- + --- - --- + --- + --- - q + -- - -- + -- -
20 18 16 14 12 10 6 4 2
q q q q q q q q q
2 4 6 10
> 2 q + 3 q - q + q |
In[13]:= | HOMFLYPT[Knot[11, Alternating, 331]][a, z] |
Out[13]= | 2
-2 2 4 6 2 z 2 2 4 2 6 2 4
-1 + a - a + 4 a - 2 a - 3 z + -- - a z + 6 a z - 2 a z - 2 z +
2
a
2 4 4 4 6 4 2 6 4 6
> a z + 3 a z - a z + a z + a z |
In[14]:= | Kauffman[Knot[11, Alternating, 331]][a, z] |
Out[14]= | 2
-2 2 4 6 z 3 5 7 2 3 z
-1 - a + a + 4 a + 2 a - - + a z - 3 a z - 3 a z + 6 z + ---- -
a 2
a
3
2 2 4 2 6 2 6 z 3 3 3 5 3
> 5 a z - 20 a z - 12 a z + ---- - 2 a z - 14 a z + 6 a z +
a
4
7 3 9 3 4 3 z 2 4 4 4 6 4
> 10 a z - 2 a z - 4 z - ---- + 7 a z + 39 a z + 26 a z -
2
a
5 6
8 4 8 z 5 3 5 5 5 7 5 9 5 6 z
> 5 a z - ---- - a z + 28 a z + 7 a z - 13 a z + a z - 6 z + -- -
a 2
a
7
2 6 4 6 6 6 8 6 3 z 7 3 7
> 11 a z - 28 a z - 21 a z + 3 a z + ---- - 5 a z - 25 a z -
a
5 7 7 7 8 2 8 4 8 6 8 9
> 11 a z + 6 a z + 4 z + 3 a z + 7 a z + 8 a z + 4 a z +
3 9 5 9 2 10 4 10
> 10 a z + 6 a z + 2 a z + 2 a z |
In[15]:= | {Vassiliev[2][Knot[11, Alternating, 331]], Vassiliev[3][Knot[11, Alternating, 331]]} |
Out[15]= | {1, -4} |
In[16]:= | Kh[Knot[11, Alternating, 331]][q, t] |
Out[16]= | 8 9 1 2 1 5 2 7 5 9
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3
q q t q t q t q t q t q t q t q t
7 10 9 8 10 5 t 2 3 2
> ----- + ----- + ----- + ---- + ---- + --- + 7 q t + 2 q t + 5 q t +
7 3 7 2 5 2 5 3 q
q t q t q t q t q t
3 3 5 3 7 4
> q t + 2 q t + q t |