© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a327
K11a327
K11a329
K11a329
K11a328
Knotscape
This page is passe. Go here instead!

   The Knot K11a328

Visit K11a328's page at Knotilus!

Acknowledgement

K11a328 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X18,6,19,5 X16,7,17,8 X22,10,1,9 X4,12,5,11 X20,14,21,13 X8,15,9,16 X2,18,3,17 X10,20,11,19 X14,22,15,21

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -8, 5, -10, 6, -2, 7, -11, 8, -4, 9, -3, 10, -7, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 12 18 16 22 4 20 8 2 10 14

Alexander Polynomial: - 3t-3 + 16t-2 - 34t-1 + 43 - 34t + 16t2 - 3t3

Conway Polynomial: 1 + 3z2 - 2z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {149, 4}

Jones Polynomial: 1 - 4q + 10q2 - 15q3 + 21q4 - 24q5 + 24q6 - 21q7 + 15q8 - 9q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 - 2q2 + q4 + 3q6 - 3q8 + 6q10 - q12 + 2q16 - 5q18 + 3q20 - 4q22 + q24 + 3q26 - 3q28 + 2q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 3a-8 + 6a-8z2 + 3a-8z4 - 5a-6 - 8a-6z2 - 6a-6z4 - 2a-6z6 + 4a-4 + 5a-4z2 - a-4z6 + a-2z2 + a-2z4

Kauffman Polynomial: - a-13z3 + a-13z5 + a-12z2 - 5a-12z4 + 4a-12z6 - 2a-11z + 6a-11z3 - 12a-11z5 + 8a-11z7 + a-10 - 4a-10z2 + 9a-10z4 - 15a-10z6 + 10a-10z8 - 3a-9z + 12a-9z3 - 8a-9z5 - 6a-9z7 + 8a-9z9 + 3a-8 - 17a-8z2 + 43a-8z4 - 42a-8z6 + 13a-8z8 + 3a-8z10 - 3a-7z + 2a-7z3 + 19a-7z5 - 33a-7z7 + 16a-7z9 + 5a-6 - 23a-6z2 + 46a-6z4 - 43a-6z6 + 11a-6z8 + 3a-6z10 - 2a-5z + 6a-5z5 - 15a-5z7 + 8a-5z9 + 4a-4 - 10a-4z2 + 15a-4z4 - 19a-4z6 + 8a-4z8 + 3a-3z3 - 8a-3z5 + 4a-3z7 + a-2z2 - 2a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11328. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          3 
j = 19         61 
j = 17        93  
j = 15       126   
j = 13      129    
j = 11     1212     
j = 9    912      
j = 7   612       
j = 5  49        
j = 3 17         
j = 1 3          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 328]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 328]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[18, 6, 19, 5], X[16, 7, 17, 8], 
 
>   X[22, 10, 1, 9], X[4, 12, 5, 11], X[20, 14, 21, 13], X[8, 15, 9, 16], 
 
>   X[2, 18, 3, 17], X[10, 20, 11, 19], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 328]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -8, 5, -10, 6, -2, 7, -11, 8, -4, 9, -3, 10, 
 
>   -7, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 328]]
Out[5]=   
DTCode[6, 12, 18, 16, 22, 4, 20, 8, 2, 10, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 328]][t]
Out[6]=   
     3    16   34              2      3
43 - -- + -- - -- - 34 t + 16 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 328]][z]
Out[7]=   
       2      4      6
1 + 3 z  - 2 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 328]}
In[9]:=
{KnotDet[Knot[11, Alternating, 328]], KnotSignature[Knot[11, Alternating, 328]]}
Out[9]=   
{149, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 328]][q]
Out[10]=   
              2       3       4       5       6       7       8      9
1 - 4 q + 10 q  - 15 q  + 21 q  - 24 q  + 24 q  - 21 q  + 15 q  - 9 q  + 
 
       10    11
>   4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 328]}
In[12]:=
A2Invariant[Knot[11, Alternating, 328]][q]
Out[12]=   
       2    4      6      8      10    12      16      18      20      22
1 - 2 q  + q  + 3 q  - 3 q  + 6 q   - q   + 2 q   - 5 q   + 3 q   - 4 q   + 
 
     24      26      28      30    34
>   q   + 3 q   - 3 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 328]][a, z]
Out[13]=   
                        2       2      2      2    2      4      4    4
  -10   3    5    4    z     6 z    8 z    5 z    z    3 z    6 z    z
-a    + -- - -- + -- - --- + ---- - ---- + ---- + -- + ---- - ---- + -- - 
         8    6    4    10     8      6      4     2     8      6     2
        a    a    a    a      a      a      a     a     a      a     a
 
       6    6
    2 z    z
>   ---- - --
      6     4
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 328]][a, z]
Out[14]=   
                                               2       2       2       2
 -10   3    5    4    2 z   3 z   3 z   2 z   z     4 z    17 z    23 z
a    + -- + -- + -- - --- - --- - --- - --- + --- - ---- - ----- - ----- - 
        8    6    4    11    9     7     5     12    10      8       6
       a    a    a    a     a     a     a     a     a       a       a
 
        2    2    3       3       3      3      3      4      4       4
    10 z    z    z     6 z    12 z    2 z    3 z    5 z    9 z    43 z
>   ----- + -- - --- + ---- + ----- + ---- + ---- - ---- + ---- + ----- + 
      4      2    13    11      9       7      3     12     10      8
     a      a    a     a       a       a      a     a      a       a
 
        4       4      4    5        5      5       5      5      5      6
    46 z    15 z    2 z    z     12 z    8 z    19 z    6 z    8 z    4 z
>   ----- + ----- - ---- + --- - ----- - ---- + ----- + ---- - ---- + ---- - 
      6       4       2     13     11      9      7       5      3     12
     a       a       a     a      a       a      a       a      a     a
 
        6       6       6       6    6      7      7       7       7      7
    15 z    42 z    43 z    19 z    z    8 z    6 z    33 z    15 z    4 z
>   ----- - ----- - ----- - ----- + -- + ---- - ---- - ----- - ----- + ---- + 
      10      8       6       4      2    11      9      7       5       3
     a       a       a       a      a    a       a      a       a       a
 
        8       8       8      8      9       9      9      10      10
    10 z    13 z    11 z    8 z    8 z    16 z    8 z    3 z     3 z
>   ----- + ----- + ----- + ---- + ---- + ----- + ---- + ----- + -----
      10      8       6       4      9      7       5      8       6
     a       a       a       a      a      a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 328]], Vassiliev[3][Knot[11, Alternating, 328]]}
Out[15]=   
{3, 6}
In[16]:=
Kh[Knot[11, Alternating, 328]][q, t]
Out[16]=   
                            3
   3      5    1     3 q   q       5        7         7  2      9  2
7 q  + 4 q  + ---- + --- + -- + 9 q  t + 6 q  t + 12 q  t  + 9 q  t  + 
                 2    t    t
              q t
 
        9  3       11  3       11  4       13  4      13  5       15  5
>   12 q  t  + 12 q   t  + 12 q   t  + 12 q   t  + 9 q   t  + 12 q   t  + 
 
       15  6      17  6      17  7      19  7    19  8      21  8    23  9
>   6 q   t  + 9 q   t  + 3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a328
K11a327
K11a327
K11a329
K11a329