© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a325
K11a325
K11a327
K11a327
K11a326
Knotscape
This page is passe. Go here instead!

   The Knot K11a326

Visit K11a326's page at Knotilus!

Acknowledgement

K11a326 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X18,5,19,6 X14,8,15,7 X22,10,1,9 X4,12,5,11 X20,13,21,14 X8,16,9,15 X10,17,11,18 X2,19,3,20 X16,21,17,22

Gauss Code: {1, -10, 2, -6, 3, -1, 4, -8, 5, -9, 6, -2, 7, -4, 8, -11, 9, -3, 10, -7, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 12 18 14 22 4 20 8 10 2 16

Alexander Polynomial: t-4 - 6t-3 + 19t-2 - 36t-1 + 45 - 36t + 19t2 - 6t3 + t4

Conway Polynomial: 1 + 2z2 + 3z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {169, 0}

Jones Polynomial: - q-5 + 4q-4 - 10q-3 + 17q-2 - 23q-1 + 28 - 27q + 24q2 - 18q3 + 11q4 - 5q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + 2q-12 - 4q-10 + 2q-8 + q-6 - 4q-4 + 7q-2 - 3 + 5q2 - 2q6 + 4q8 - 5q10 + 2q12 - 2q16 + q18

HOMFLY-PT Polynomial: a-4z2 + a-4z4 - 2a-2 - 6a-2z2 - 6a-2z4 - 2a-2z6 + 5 + 11z2 + 11z4 + 5z6 + z8 - 2a2 - 4a2z2 - 3a2z4 - a2z6

Kauffman Polynomial: - a-6z4 + a-6z6 + a-5z + 3a-5z3 - 9a-5z5 + 5a-5z7 - 2a-4z2 + 11a-4z4 - 21a-4z6 + 10a-4z8 + a-3z + 2a-3z5 - 16a-3z7 + 10a-3z9 + 2a-2 - 14a-2z2 + 39a-2z4 - 47a-2z6 + 13a-2z8 + 4a-2z10 - a-1z - 5a-1z3 + 28a-1z5 - 44a-1z7 + 21a-1z9 + 5 - 22z2 + 53z4 - 53z6 + 16z8 + 4z10 - 3az + 6az3 + 3az5 - 14az7 + 11az9 + 2a2 - 10a2z2 + 22a2z4 - 24a2z6 + 13a2z8 - 2a3z + 7a3z3 - 13a3z5 + 9a3z7 - 4a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11326. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          4 
j = 9         71 
j = 7        114  
j = 5       137   
j = 3      1411    
j = 1     1413     
j = -1    1015      
j = -3   713       
j = -5  310        
j = -7 17         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 326]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 326]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[18, 5, 19, 6], X[14, 8, 15, 7], 
 
>   X[22, 10, 1, 9], X[4, 12, 5, 11], X[20, 13, 21, 14], X[8, 16, 9, 15], 
 
>   X[10, 17, 11, 18], X[2, 19, 3, 20], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 326]]
Out[4]=   
GaussCode[1, -10, 2, -6, 3, -1, 4, -8, 5, -9, 6, -2, 7, -4, 8, -11, 9, -3, 10, 
 
>   -7, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 326]]
Out[5]=   
DTCode[6, 12, 18, 14, 22, 4, 20, 8, 10, 2, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 326]][t]
Out[6]=   
      -4   6    19   36              2      3    4
45 + t   - -- + -- - -- - 36 t + 19 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 326]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  + 3 z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 326]}
In[9]:=
{KnotDet[Knot[11, Alternating, 326]], KnotSignature[Knot[11, Alternating, 326]]}
Out[9]=   
{169, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 326]][q]
Out[10]=   
      -5   4    10   17   23              2       3       4      5    6
28 - q   + -- - -- + -- - -- - 27 q + 24 q  - 18 q  + 11 q  - 5 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 326]}
In[12]:=
A2Invariant[Knot[11, Alternating, 326]][q]
Out[12]=   
      -14    2     4    2     -6   4    7       2      6      8      10
-3 - q    + --- - --- + -- + q   - -- + -- + 5 q  - 2 q  + 4 q  - 5 q   + 
             12    10    8          4    2
            q     q     q          q    q
 
       12      16    18
>   2 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 326]][a, z]
Out[13]=   
                         2      2                      4      4
    2       2       2   z    6 z       2  2       4   z    6 z       2  4
5 - -- - 2 a  + 11 z  + -- - ---- - 4 a  z  + 11 z  + -- - ---- - 3 a  z  + 
     2                   4     2                       4     2
    a                   a     a                       a     a
 
              6
       6   2 z     2  6    8
>   5 z  - ---- - a  z  + z
             2
            a
In[14]:=
Kauffman[Knot[11, Alternating, 326]][a, z]
Out[14]=   
                                                          2       2
    2       2   z    z    z              3         2   2 z    14 z
5 + -- + 2 a  + -- + -- - - - 3 a z - 2 a  z - 22 z  - ---- - ----- - 
     2           5    3   a                              4      2
    a           a    a                                  a      a
 
                  3      3                                       4       4
        2  2   3 z    5 z         3      3  3    5  3       4   z    11 z
>   10 a  z  + ---- - ---- + 6 a z  + 7 a  z  - a  z  + 53 z  - -- + ----- + 
                 5     a                                         6     4
                a                                               a     a
 
        4                           5      5       5
    39 z        2  4      4  4   9 z    2 z    28 z         5       3  5
>   ----- + 22 a  z  - 4 a  z  - ---- + ---- + ----- + 3 a z  - 13 a  z  + 
      2                            5      3      a
     a                            a      a
 
                     6       6       6                           7       7
     5  5       6   z    21 z    47 z        2  6      4  6   5 z    16 z
>   a  z  - 53 z  + -- - ----- - ----- - 24 a  z  + 4 a  z  + ---- - ----- - 
                     6     4       2                            5      3
                    a     a       a                            a      a
 
        7                                   8       8                  9
    44 z          7      3  7       8   10 z    13 z        2  8   10 z
>   ----- - 14 a z  + 9 a  z  + 16 z  + ----- + ----- + 13 a  z  + ----- + 
      a                                   4       2                  3
                                         a       a                  a
 
        9                        10
    21 z          9      10   4 z
>   ----- + 11 a z  + 4 z   + -----
      a                         2
                               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 326]], Vassiliev[3][Knot[11, Alternating, 326]]}
Out[15]=   
{2, 0}
In[16]:=
Kh[Knot[11, Alternating, 326]][q, t]
Out[16]=   
15            1        3       1       7       3      10       7      13
-- + 14 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    10                 3         3  2       5  2      5  3       7  3
>   --- + 13 q t + 14 q  t + 11 q  t  + 13 q  t  + 7 q  t  + 11 q  t  + 
    q t
 
       7  4      9  4    9  5      11  5    13  6
>   4 q  t  + 7 q  t  + q  t  + 4 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a326
K11a325
K11a325
K11a327
K11a327