© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a321
K11a321
K11a323
K11a323
K11a322
Knotscape
This page is passe. Go here instead!

   The Knot K11a322

Visit K11a322's page at Knotilus!

Acknowledgement

K11a322 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X16,5,17,6 X22,8,1,7 X20,9,21,10 X4,12,5,11 X18,13,19,14 X8,15,9,16 X2,17,3,18 X10,19,11,20 X14,21,15,22

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -8, 5, -10, 6, -2, 7, -11, 8, -3, 9, -7, 10, -5, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 12 16 22 20 4 18 8 2 10 14

Alexander Polynomial: 2t-3 - 13t-2 + 36t-1 - 49 + 36t - 13t2 + 2t3

Conway Polynomial: 1 + 2z2 - z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {151, -2}

Jones Polynomial: - q-8 + 4q-7 - 10q-6 + 16q-5 - 21q-4 + 25q-3 - 24q-2 + 21q-1 - 15 + 9q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a147, ...}

A2 (sl(3)) Invariant: - q-24 + 2q-22 - 3q-20 - 3q-18 + 5q-16 - 3q-14 + 4q-12 + 2q-10 - 2q-8 + 3q-6 - 5q-4 + 4q-2 - 2q2 + 4q4 - 2q6 - q8 + q10

HOMFLY-PT Polynomial: a-2z2 + 1 - z2 - 2z4 - 2a2 - 2a2z2 + a2z6 + 4a4 + 5a4z2 + 2a4z4 + a4z6 - 2a6 - a6z2 - a6z4

Kauffman Polynomial: a-2z2 - 2a-2z4 + a-2z6 + 5a-1z3 - 9a-1z5 + 4a-1z7 + 1 - 3z2 + 9z4 - 15z6 + 7z8 + az - 2az3 + 3az5 - 11az7 + 7az9 + 2a2 - 13a2z2 + 29a2z4 - 32a2z6 + 9a2z8 + 3a2z10 + a3z - 8a3z3 + 24a3z5 - 33a3z7 + 16a3z9 + 4a4 - 17a4z2 + 40a4z4 - 42a4z6 + 14a4z8 + 3a4z10 - 3a5z + 8a5z3 - 3a5z5 - 9a5z7 + 9a5z9 + 2a6 - 8a6z2 + 18a6z4 - 22a6z6 + 12a6z8 - 3a7z + 8a7z3 - 14a7z5 + 9a7z7 - 4a8z4 + 4a8z6 - a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11322. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         61 
j = 1        93  
j = -1       126   
j = -3      1310    
j = -5     1211     
j = -7    913      
j = -9   712       
j = -11  39        
j = -13 17         
j = -15 3          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 322]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 322]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[16, 5, 17, 6], X[22, 8, 1, 7], 
 
>   X[20, 9, 21, 10], X[4, 12, 5, 11], X[18, 13, 19, 14], X[8, 15, 9, 16], 
 
>   X[2, 17, 3, 18], X[10, 19, 11, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 322]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -8, 5, -10, 6, -2, 7, -11, 8, -3, 9, -7, 10, 
 
>   -5, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 322]]
Out[5]=   
DTCode[6, 12, 16, 22, 20, 4, 18, 8, 2, 10, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 322]][t]
Out[6]=   
      2    13   36              2      3
-49 + -- - -- + -- + 36 t - 13 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 322]][z]
Out[7]=   
       2    4      6
1 + 2 z  - z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 322]}
In[9]:=
{KnotDet[Knot[11, Alternating, 322]], KnotSignature[Knot[11, Alternating, 322]]}
Out[9]=   
{151, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 322]][q]
Out[10]=   
       -8   4    10   16   21   25   24   21            2    3
-15 - q   + -- - -- + -- - -- + -- - -- + -- + 9 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 147], Knot[11, Alternating, 322]}
In[12]:=
A2Invariant[Knot[11, Alternating, 322]][q]
Out[12]=   
  -24    2     3     3     5     3     4     2    2    3    5    4       2
-q    + --- - --- - --- + --- - --- + --- + --- - -- + -- - -- + -- - 2 q  + 
         22    20    18    16    14    12    10    8    6    4    2
        q     q     q     q     q     q     q     q    q    q    q
 
       4      6    8    10
>   4 q  - 2 q  - q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 322]][a, z]
Out[13]=   
                               2
       2      4      6    2   z       2  2      4  2    6  2      4      4  4
1 - 2 a  + 4 a  - 2 a  - z  + -- - 2 a  z  + 5 a  z  - a  z  - 2 z  + 2 a  z  - 
                               2
                              a
 
     6  4    2  6    4  6
>   a  z  + a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 322]][a, z]
Out[14]=   
                                                                2
       2      4      6          3        5        7        2   z        2  2
1 + 2 a  + 4 a  + 2 a  + a z + a  z - 3 a  z - 3 a  z - 3 z  + -- - 13 a  z  - 
                                                                2
                                                               a
 
                            3
        4  2      6  2   5 z         3      3  3      5  3      7  3    9  3
>   17 a  z  - 8 a  z  + ---- - 2 a z  - 8 a  z  + 8 a  z  + 8 a  z  - a  z  + 
                          a
 
              4                                                 5
       4   2 z        2  4       4  4       6  4      8  4   9 z         5
>   9 z  - ---- + 29 a  z  + 40 a  z  + 18 a  z  - 4 a  z  - ---- + 3 a z  + 
             2                                                a
            a
 
                                                     6
        3  5      5  5       7  5    9  5       6   z        2  6       4  6
>   24 a  z  - 3 a  z  - 14 a  z  + a  z  - 15 z  + -- - 32 a  z  - 42 a  z  - 
                                                     2
                                                    a
 
                            7
        6  6      8  6   4 z          7       3  7      5  7      7  7      8
>   22 a  z  + 4 a  z  + ---- - 11 a z  - 33 a  z  - 9 a  z  + 9 a  z  + 7 z  + 
                          a
 
       2  8       4  8       6  8        9       3  9      5  9      2  10
>   9 a  z  + 14 a  z  + 12 a  z  + 7 a z  + 16 a  z  + 9 a  z  + 3 a  z   + 
 
       4  10
>   3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 322]], Vassiliev[3][Knot[11, Alternating, 322]]}
Out[15]=   
{2, -4}
In[16]:=
Kh[Knot[11, Alternating, 322]][q, t]
Out[16]=   
10   12     1        3        1        7        3        9        7      12
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      9      13      12      11     13    6 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 9 q t + 3 q t  + 6 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a322
K11a321
K11a321
K11a323
K11a323