© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a319
K11a319
K11a321
K11a321
K11a320
Knotscape
This page is passe. Go here instead!

   The Knot K11a320

Visit K11a320's page at Knotilus!

Acknowledgement

K11a320 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X16,6,17,5 X22,8,1,7 X18,10,19,9 X4,12,5,11 X20,14,21,13 X2,16,3,15 X10,18,11,17 X8,20,9,19 X14,22,15,21

Gauss Code: {1, -8, 2, -6, 3, -1, 4, -10, 5, -9, 6, -2, 7, -11, 8, -3, 9, -5, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 12 16 22 18 4 20 2 10 8 14

Alexander Polynomial: 9t-2 - 27t-1 + 37 - 27t + 9t2

Conway Polynomial: 1 + 9z2 + 9z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {109, 4}

Jones Polynomial: q2 - 3q3 + 7q4 - 11q5 + 16q6 - 17q7 + 17q8 - 15q9 + 11q10 - 7q11 + 3q12 - q13

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q6 - 2q8 + 2q10 + q12 - 3q14 + 4q16 + q20 + 3q22 - q24 + 3q26 - 3q28 - q30 + q32 - 4q34 + q36 + q38 - q40

HOMFLY-PT Polynomial: - a-12z2 - 3a-10 - 2a-10z2 + a-10z4 + 3a-8 + 7a-8z2 + 4a-8z4 + a-6 + 4a-6z2 + 3a-6z4 + a-4z2 + a-4z4

Kauffman Polynomial: - 2a-15z + 5a-15z3 - 4a-15z5 + a-15z7 - 4a-14z2 + 12a-14z4 - 11a-14z6 + 3a-14z8 + a-13z - a-13z3 + 8a-13z5 - 12a-13z7 + 4a-13z9 - 4a-12z2 + 20a-12z4 - 21a-12z6 + 2a-12z8 + 2a-12z10 - a-11z - 2a-11z3 + 17a-11z5 - 27a-11z7 + 10a-11z9 + 3a-10 - 15a-10z2 + 32a-10z4 - 33a-10z6 + 8a-10z8 + 2a-10z10 - 4a-9z + 11a-9z3 - 8a-9z5 - 6a-9z7 + 6a-9z9 + 3a-8 - 9a-8z2 + 16a-8z4 - 17a-8z6 + 9a-8z8 + 5a-7z3 - 10a-7z5 + 8a-7z7 - a-6 + 5a-6z2 - 7a-6z4 + 6a-6z6 - 2a-5z3 + 3a-5z5 - a-4z2 + a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {9, 26}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11320. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 27           1
j = 25          2 
j = 23         51 
j = 21        62  
j = 19       95   
j = 17      86    
j = 15     99     
j = 13    78      
j = 11   49       
j = 9  37        
j = 7  4         
j = 513          
j = 31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 320]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 320]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[22, 8, 1, 7], 
 
>   X[18, 10, 19, 9], X[4, 12, 5, 11], X[20, 14, 21, 13], X[2, 16, 3, 15], 
 
>   X[10, 18, 11, 17], X[8, 20, 9, 19], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 320]]
Out[4]=   
GaussCode[1, -8, 2, -6, 3, -1, 4, -10, 5, -9, 6, -2, 7, -11, 8, -3, 9, -5, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 320]]
Out[5]=   
DTCode[6, 12, 16, 22, 18, 4, 20, 2, 10, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 320]][t]
Out[6]=   
     9    27             2
37 + -- - -- - 27 t + 9 t
      2   t
     t
In[7]:=
Conway[Knot[11, Alternating, 320]][z]
Out[7]=   
       2      4
1 + 9 z  + 9 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 320]}
In[9]:=
{KnotDet[Knot[11, Alternating, 320]], KnotSignature[Knot[11, Alternating, 320]]}
Out[9]=   
{109, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 320]][q]
Out[10]=   
 2      3      4       5       6       7       8       9       10      11
q  - 3 q  + 7 q  - 11 q  + 16 q  - 17 q  + 17 q  - 15 q  + 11 q   - 7 q   + 
 
       12    13
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 320]}
In[12]:=
A2Invariant[Knot[11, Alternating, 320]][q]
Out[12]=   
 6      8      10    12      14      16    20      22    24      26      28
q  - 2 q  + 2 q   + q   - 3 q   + 4 q   + q   + 3 q   - q   + 3 q   - 3 q   - 
 
     30    32      34    36    38    40
>   q   + q   - 4 q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 320]][a, z]
Out[13]=   
                  2       2      2      2    2    4       4      4    4
-3    3     -6   z     2 z    7 z    4 z    z    z     4 z    3 z    z
--- + -- + a   - --- - ---- + ---- + ---- + -- + --- + ---- + ---- + --
 10    8          12    10      8      6     4    10     8      6     4
a     a          a     a       a      a     a    a      a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 320]][a, z]
Out[14]=   
                                            2      2       2      2      2
 3    3     -6   2 z    z     z    4 z   4 z    4 z    15 z    9 z    5 z
--- + -- - a   - --- + --- - --- - --- - ---- - ---- - ----- - ---- + ---- - 
 10    8          15    13    11    9     14     12      10      8      6
a     a          a     a     a     a     a      a       a       a      a
 
     2      3    3       3       3      3      3       4       4       4
    z    5 z    z     2 z    11 z    5 z    2 z    12 z    20 z    32 z
>   -- + ---- - --- - ---- + ----- + ---- - ---- + ----- + ----- + ----- + 
     4    15     13    11      9       7      5      14      12      10
    a    a      a     a       a       a      a      a       a       a
 
        4      4    4      5      5       5      5       5      5       6
    16 z    7 z    z    4 z    8 z    17 z    8 z    10 z    3 z    11 z
>   ----- - ---- + -- - ---- + ---- + ----- - ---- - ----- + ---- - ----- - 
      8       6     4    15     13      11      9      7       5      14
     a       a     a    a      a       a       a      a       a      a
 
        6       6       6      6    7        7       7      7      7      8
    21 z    33 z    17 z    6 z    z     12 z    27 z    6 z    8 z    3 z
>   ----- - ----- - ----- + ---- + --- - ----- - ----- - ---- + ---- + ---- + 
      12      10      8       6     15     13      11      9      7     14
     a       a       a       a     a      a       a       a      a     a
 
       8      8      8      9       9      9      10      10
    2 z    8 z    9 z    4 z    10 z    6 z    2 z     2 z
>   ---- + ---- + ---- + ---- + ----- + ---- + ----- + -----
     12     10      8     13      11      9      12      10
    a      a       a     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 320]], Vassiliev[3][Knot[11, Alternating, 320]]}
Out[15]=   
{9, 26}
In[16]:=
Kh[Knot[11, Alternating, 320]][q, t]
Out[16]=   
 3    5      5        7  2      9  2      9  3      11  3      11  4
q  + q  + 3 q  t + 4 q  t  + 3 q  t  + 7 q  t  + 4 q   t  + 9 q   t  + 
 
       13  4      13  5      15  5      15  6      17  6      17  7
>   7 q   t  + 8 q   t  + 9 q   t  + 9 q   t  + 8 q   t  + 6 q   t  + 
 
       19  7      19  8      21  8      21  9      23  9    23  10
>   9 q   t  + 5 q   t  + 6 q   t  + 2 q   t  + 5 q   t  + q   t   + 
 
       25  10    27  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a320
K11a319
K11a319
K11a321
K11a321