© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a310
K11a310
K11a312
K11a312
K11a311
Knotscape
This page is passe. Go here instead!

   The Knot K11a311

Visit K11a311's page at Knotilus!

Acknowledgement

K11a311 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X14,6,15,5 X20,8,21,7 X18,10,19,9 X4,12,5,11 X2,14,3,13 X22,15,1,16 X10,18,11,17 X8,20,9,19 X16,21,17,22

Gauss Code: {1, -7, 2, -6, 3, -1, 4, -10, 5, -9, 6, -2, 7, -3, 8, -11, 9, -5, 10, -4, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 12 14 20 18 4 2 22 10 8 16

Alexander Polynomial: - 4t-2 + 20t-1 - 31 + 20t - 4t2

Conway Polynomial: 1 + 4z2 - 4z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {79, 2}

Jones Polynomial: q-1 - 3 + 6q - 9q2 + 12q3 - 12q4 + 12q5 - 10q6 + 7q7 - 4q8 + 2q9 - q10

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-4 - q-2 - 1 + 3q2 - 2q4 + q6 + 2q8 - q10 + 2q12 - q14 + q16 - 2q20 + 3q22 - q26 + q28 - q30 - q32

HOMFLY-PT Polynomial: - a-10 + a-8 + 2a-8z2 + a-6z2 - a-6z4 - a-4z2 - 2a-4z4 + a-2 + a-2z2 - a-2z4 + z2

Kauffman Polynomial: - 2a-11z + 7a-11z3 - 5a-11z5 + a-11z7 + a-10 - 5a-10z2 + 12a-10z4 - 9a-10z6 + 2a-10z8 + 2a-9z - 4a-9z3 + 7a-9z5 - 7a-9z7 + 2a-9z9 + a-8 - 7a-8z2 + 11a-8z4 - 8a-8z6 + a-8z10 + 6a-7z - 23a-7z3 + 25a-7z5 - 17a-7z7 + 5a-7z9 - 4a-6z2 + 9a-6z4 - 11a-6z6 + 3a-6z8 + a-6z10 + 2a-5z - 3a-5z3 + a-5z5 - 3a-5z7 + 3a-5z9 + 2a-4z2 + 3a-4z4 - 7a-4z6 + 5a-4z8 + 6a-3z3 - 9a-3z5 + 6a-3z7 - a-2 + 3a-2z2 - 6a-2z4 + 5a-2z6 - 3a-1z3 + 3a-1z5 - z2 + z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 10}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11311. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 21           1
j = 19          1 
j = 17         31 
j = 15        41  
j = 13       63   
j = 11      64    
j = 9     66     
j = 7    66      
j = 5   36       
j = 3  36        
j = 1 14         
j = -1 2          
j = -31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 311]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 311]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[14, 6, 15, 5], X[20, 8, 21, 7], 
 
>   X[18, 10, 19, 9], X[4, 12, 5, 11], X[2, 14, 3, 13], X[22, 15, 1, 16], 
 
>   X[10, 18, 11, 17], X[8, 20, 9, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 311]]
Out[4]=   
GaussCode[1, -7, 2, -6, 3, -1, 4, -10, 5, -9, 6, -2, 7, -3, 8, -11, 9, -5, 10, 
 
>   -4, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 311]]
Out[5]=   
DTCode[6, 12, 14, 20, 18, 4, 2, 22, 10, 8, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 311]][t]
Out[6]=   
      4    20             2
-31 - -- + -- + 20 t - 4 t
       2   t
      t
In[7]:=
Conway[Knot[11, Alternating, 311]][z]
Out[7]=   
       2      4
1 + 4 z  - 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 311]}
In[9]:=
{KnotDet[Knot[11, Alternating, 311]], KnotSignature[Knot[11, Alternating, 311]]}
Out[9]=   
{79, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 311]][q]
Out[10]=   
     1            2       3       4       5       6      7      8      9    10
-3 + - + 6 q - 9 q  + 12 q  - 12 q  + 12 q  - 10 q  + 7 q  - 4 q  + 2 q  - q
     q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 311]}
In[12]:=
A2Invariant[Knot[11, Alternating, 311]][q]
Out[12]=   
      -4    -2      2      4    6      8    10      12    14    16      20
-1 + q   - q   + 3 q  - 2 q  + q  + 2 q  - q   + 2 q   - q   + q   - 2 q   + 
 
       22    26    28    30    32
>   3 q   - q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 311]][a, z]
Out[13]=   
                            2    2    2    2    4      4    4
  -10    -8    -2    2   2 z    z    z    z    z    2 z    z
-a    + a   + a   + z  + ---- + -- - -- + -- - -- - ---- - --
                           8     6    4    2    6     4     2
                          a     a    a    a    a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 311]][a, z]
Out[14]=   
                                                   2      2      2      2
 -10    -8    -2   2 z   2 z   6 z   2 z    2   5 z    7 z    4 z    2 z
a    + a   - a   - --- + --- + --- + --- - z  - ---- - ---- - ---- + ---- + 
                    11    9     7     5          10      8      6      4
                   a     a     a     a          a       a      a      a
 
       2      3      3       3      3      3      3            4       4
    3 z    7 z    4 z    23 z    3 z    6 z    3 z     4   12 z    11 z
>   ---- + ---- - ---- - ----- - ---- + ---- - ---- + z  + ----- + ----- + 
      2     11      9      7       5      3     a            10      8
     a     a       a      a       a      a                  a       a
 
       4      4      4      5      5       5    5      5      5      6      6
    9 z    3 z    6 z    5 z    7 z    25 z    z    9 z    3 z    9 z    8 z
>   ---- + ---- - ---- - ---- + ---- + ----- + -- - ---- + ---- - ---- - ---- - 
      6      4      2     11      9      7      5     3     a      10      8
     a      a      a     a       a      a      a     a            a       a
 
        6      6      6    7       7       7      7      7      8      8
    11 z    7 z    5 z    z     7 z    17 z    3 z    6 z    2 z    3 z
>   ----- - ---- + ---- + --- - ---- - ----- - ---- + ---- + ---- + ---- + 
      6       4      2     11     9      7       5      3     10      6
     a       a      a     a      a      a       a      a     a       a
 
       8      9      9      9    10    10
    5 z    2 z    5 z    3 z    z     z
>   ---- + ---- + ---- + ---- + --- + ---
      4      9      7      5     8     6
     a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 311]], Vassiliev[3][Knot[11, Alternating, 311]]}
Out[15]=   
{4, 10}
In[16]:=
Kh[Knot[11, Alternating, 311]][q, t]
Out[16]=   
         3     1      2    q      3        5        5  2      7  2      7  3
4 q + 3 q  + ----- + --- + - + 6 q  t + 3 q  t + 6 q  t  + 6 q  t  + 6 q  t  + 
              3  2   q t   t
             q  t
 
       9  3      9  4      11  4      11  5      13  5      13  6      15  6
>   6 q  t  + 6 q  t  + 6 q   t  + 4 q   t  + 6 q   t  + 3 q   t  + 4 q   t  + 
 
     15  7      17  7    17  8    19  8    21  9
>   q   t  + 3 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a311
K11a310
K11a310
K11a312
K11a312