© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a308
K11a308
K11a310
K11a310
K11a309
Knotscape
This page is passe. Go here instead!

   The Knot K11a309

Visit K11a309's page at Knotilus!

Acknowledgement

K11a309 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X14,6,15,5 X18,8,19,7 X20,10,21,9 X4,12,5,11 X2,14,3,13 X22,15,1,16 X10,18,11,17 X8,20,9,19 X16,21,17,22

Gauss Code: {1, -7, 2, -6, 3, -1, 4, -10, 5, -9, 6, -2, 7, -3, 8, -11, 9, -4, 10, -5, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 12 14 18 20 4 2 22 10 8 16

Alexander Polynomial: - 2t-3 + 11t-2 - 21t-1 + 25 - 21t + 11t2 - 2t3

Conway Polynomial: 1 + 5z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a63, ...}

Determinant and Signature: {93, 4}

Jones Polynomial: 1 - 3q + 6q2 - 9q3 + 13q4 - 14q5 + 15q6 - 13q7 + 9q8 - 6q9 + 3q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 - q2 + q6 - 2q8 + 4q10 + q14 + 2q16 - 2q18 + 2q20 - 2q22 + q26 - 2q28 + q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + a-8 + 4a-8z2 + 2a-8z4 - a-6 - a-6z2 - 2a-6z4 - a-6z6 + 2a-4 + a-4z2 - 2a-4z4 - a-4z6 + 2a-2z2 + a-2z4

Kauffman Polynomial: - 2a-13z3 + a-13z5 + a-12z2 - 6a-12z4 + 3a-12z6 - 4a-11z + 10a-11z3 - 12a-11z5 + 5a-11z7 + a-10 - 5a-10z2 + 11a-10z4 - 11a-10z6 + 5a-10z8 - 3a-9z + 15a-9z3 - 9a-9z5 - a-9z7 + 3a-9z9 + a-8 - 11a-8z2 + 28a-8z4 - 21a-8z6 + 6a-8z8 + a-8z10 + a-7z - 5a-7z3 + 14a-7z5 - 14a-7z7 + 6a-7z9 + a-6 - 13a-6z2 + 23a-6z4 - 19a-6z6 + 5a-6z8 + a-6z10 - 2a-5z3 + a-5z5 - 5a-5z7 + 3a-5z9 + 2a-4 - 6a-4z2 + 9a-4z4 - 11a-4z6 + 4a-4z8 + 6a-3z3 - 9a-3z5 + 3a-3z7 + 2a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, 12}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11309. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          2 
j = 19         41 
j = 17        52  
j = 15       84   
j = 13      75    
j = 11     78     
j = 9    67      
j = 7   37       
j = 5  36        
j = 3 14         
j = 1 2          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 309]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 309]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[14, 6, 15, 5], X[18, 8, 19, 7], 
 
>   X[20, 10, 21, 9], X[4, 12, 5, 11], X[2, 14, 3, 13], X[22, 15, 1, 16], 
 
>   X[10, 18, 11, 17], X[8, 20, 9, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 309]]
Out[4]=   
GaussCode[1, -7, 2, -6, 3, -1, 4, -10, 5, -9, 6, -2, 7, -3, 8, -11, 9, -4, 10, 
 
>   -5, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 309]]
Out[5]=   
DTCode[6, 12, 14, 18, 20, 4, 2, 22, 10, 8, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 309]][t]
Out[6]=   
     2    11   21              2      3
25 - -- + -- - -- - 21 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 309]][z]
Out[7]=   
       2    4      6
1 + 5 z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 63], Knot[11, Alternating, 309]}
In[9]:=
{KnotDet[Knot[11, Alternating, 309]], KnotSignature[Knot[11, Alternating, 309]]}
Out[9]=   
{93, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 309]][q]
Out[10]=   
             2      3       4       5       6       7      8      9      10
1 - 3 q + 6 q  - 9 q  + 13 q  - 14 q  + 15 q  - 13 q  + 9 q  - 6 q  + 3 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 309]}
In[12]:=
A2Invariant[Knot[11, Alternating, 309]][q]
Out[12]=   
     2    6      8      10    14      16      18      20      22    26
1 - q  + q  - 2 q  + 4 q   + q   + 2 q   - 2 q   + 2 q   - 2 q   + q   - 
 
       28    30    34
>   2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 309]][a, z]
Out[13]=   
                          2       2    2    2      2      4      4      4
  -10    -8    -6   2    z     4 z    z    z    2 z    2 z    2 z    2 z
-a    + a   - a   + -- - --- + ---- - -- + -- + ---- + ---- - ---- - ---- + 
                     4    10     8     6    4     2      8      6      4
                    a    a      a     a    a     a      a      a      a
 
     4    6    6
    z    z    z
>   -- - -- - --
     2    6    4
    a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 309]][a, z]
Out[14]=   
                                          2       2       2       2      2
 -10    -8    -6   2    4 z   3 z   z    z     5 z    11 z    13 z    6 z
a    + a   + a   + -- - --- - --- + -- + --- - ---- - ----- - ----- - ---- + 
                    4    11    9     7    12    10      8       6       4
                   a    a     a     a    a     a       a       a       a
 
       2      3       3       3      3      3      3      4       4       4
    2 z    2 z    10 z    15 z    5 z    2 z    6 z    6 z    11 z    28 z
>   ---- - ---- + ----- + ----- - ---- - ---- + ---- - ---- + ----- + ----- + 
      2     13      11      9       7      5      3     12      10      8
     a     a       a       a       a      a      a     a       a       a
 
        4      4      4    5        5      5       5    5      5      6
    23 z    9 z    3 z    z     12 z    9 z    14 z    z    9 z    3 z
>   ----- + ---- - ---- + --- - ----- - ---- + ----- + -- - ---- + ---- - 
      6       4      2     13     11      9      7      5     3     12
     a       a      a     a      a       a      a      a     a     a
 
        6       6       6       6    6      7    7       7      7      7
    11 z    21 z    19 z    11 z    z    5 z    z    14 z    5 z    3 z
>   ----- - ----- - ----- - ----- + -- + ---- - -- - ----- - ---- + ---- + 
      10      8       6       4      2    11     9     7       5      3
     a       a       a       a      a    a      a     a       a      a
 
       8      8      8      8      9      9      9    10    10
    5 z    6 z    5 z    4 z    3 z    6 z    3 z    z     z
>   ---- + ---- + ---- + ---- + ---- + ---- + ---- + --- + ---
     10      8      6      4      9      7      5     8     6
    a       a      a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 309]], Vassiliev[3][Knot[11, Alternating, 309]]}
Out[15]=   
{5, 12}
In[16]:=
Kh[Knot[11, Alternating, 309]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7        7  2      9  2      9  3
4 q  + 3 q  + ---- + --- + -- + 6 q  t + 3 q  t + 7 q  t  + 6 q  t  + 7 q  t  + 
                 2    t    t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   7 q   t  + 8 q   t  + 7 q   t  + 5 q   t  + 8 q   t  + 4 q   t  + 
 
       17  6      17  7      19  7    19  8      21  8    23  9
>   5 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a309
K11a308
K11a308
K11a310
K11a310