© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a300
K11a300
K11a302
K11a302
K11a301
Knotscape
This page is passe. Go here instead!

   The Knot K11a301

Visit K11a301's page at Knotilus!

Acknowledgement

K11a301 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X18,5,19,6 X14,7,15,8 X16,10,17,9 X4,11,5,12 X22,13,1,14 X20,16,21,15 X12,18,13,17 X2,19,3,20 X8,21,9,22

Gauss Code: {1, -10, 2, -6, 3, -1, 4, -11, 5, -2, 6, -9, 7, -4, 8, -5, 9, -3, 10, -8, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 10 18 14 16 4 22 20 12 2 8

Alexander Polynomial: - t-4 + 7t-3 - 22t-2 + 43t-1 - 53 + 43t - 22t2 + 7t3 - t4

Conway Polynomial: 1 + 2z2 - z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {199, -2}

Jones Polynomial: - q-8 + 5q-7 - 13q-6 + 21q-5 - 28q-4 + 33q-3 - 32q-2 + 28q-1 - 20 + 12q - 5q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-24 + 2q-22 - q-20 - 4q-18 + 5q-16 - 5q-14 + 3q-12 + 2q-10 - 3q-8 + 7q-6 - 6q-4 + 6q-2 - 1 - 3q2 + 4q4 - 3q6 + q8

HOMFLY-PT Polynomial: z2 + 2z4 + z6 + a2 - 2a2z2 - 6a2z4 - 4a2z6 - a2z8 + a4 + 4a4z2 + 5a4z4 + 2a4z6 - a6 - a6z2 - a6z4

Kauffman Polynomial: - a-2z4 + a-2z6 + 3a-1z3 - 8a-1z5 + 5a-1z7 - 3z2 + 14z4 - 22z6 + 11z8 + 4az3 + 2az5 - 18az7 + 12az9 - a2 - 8a2z2 + 43a2z4 - 59a2z6 + 18a2z8 + 5a2z10 + 5a3z3 + 13a3z5 - 47a3z7 + 27a3z9 + a4 - 10a4z2 + 46a4z4 - 70a4z6 + 26a4z8 + 5a4z10 - 2a5z + 10a5z3 - 13a5z5 - 11a5z7 + 15a5z9 + a6 - 5a6z2 + 16a6z4 - 29a6z6 + 19a6z8 - 2a7z + 6a7z3 - 15a7z5 + 13a7z7 - 2a8z4 + 5a8z6 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11301. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          4 
j = 3         81 
j = 1        124  
j = -1       168   
j = -3      1713    
j = -5     1615     
j = -7    1217      
j = -9   916       
j = -11  412        
j = -13 19         
j = -15 4          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 301]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 301]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[18, 5, 19, 6], X[14, 7, 15, 8], 
 
>   X[16, 10, 17, 9], X[4, 11, 5, 12], X[22, 13, 1, 14], X[20, 16, 21, 15], 
 
>   X[12, 18, 13, 17], X[2, 19, 3, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 301]]
Out[4]=   
GaussCode[1, -10, 2, -6, 3, -1, 4, -11, 5, -2, 6, -9, 7, -4, 8, -5, 9, -3, 10, 
 
>   -8, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 301]]
Out[5]=   
DTCode[6, 10, 18, 14, 16, 4, 22, 20, 12, 2, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 301]][t]
Out[6]=   
       -4   7    22   43              2      3    4
-53 - t   + -- - -- + -- + 43 t - 22 t  + 7 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 301]][z]
Out[7]=   
       2    6    8
1 + 2 z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 301]}
In[9]:=
{KnotDet[Knot[11, Alternating, 301]], KnotSignature[Knot[11, Alternating, 301]]}
Out[9]=   
{199, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 301]][q]
Out[10]=   
       -8   5    13   21   28   33   32   28             2    3
-20 - q   + -- - -- + -- - -- + -- - -- + -- + 12 q - 5 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 301]}
In[12]:=
A2Invariant[Knot[11, Alternating, 301]][q]
Out[12]=   
      -24    2     -20    4     5     5     3     2    3    7    6    6
-1 - q    + --- - q    - --- + --- - --- + --- + --- - -- + -- - -- + -- - 
             22           18    16    14    12    10    8    6    4    2
            q            q     q     q     q     q     q    q    q    q
 
       2      4      6    8
>   3 q  + 4 q  - 3 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 301]][a, z]
Out[13]=   
 2    4    6    2      2  2      4  2    6  2      4      2  4      4  4
a  + a  - a  + z  - 2 a  z  + 4 a  z  - a  z  + 2 z  - 6 a  z  + 5 a  z  - 
 
     6  4    6      2  6      4  6    2  8
>   a  z  + z  - 4 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 301]][a, z]
Out[14]=   
                                                                           3
  2    4    6      5        7        2      2  2       4  2      6  2   3 z
-a  + a  + a  - 2 a  z - 2 a  z - 3 z  - 8 a  z  - 10 a  z  - 5 a  z  + ---- + 
                                                                         a
 
                                                     4
         3      3  3       5  3      7  3       4   z        2  4       4  4
>   4 a z  + 5 a  z  + 10 a  z  + 6 a  z  + 14 z  - -- + 43 a  z  + 46 a  z  + 
                                                     2
                                                    a
 
                            5
        6  4      8  4   8 z         5       3  5       5  5       7  5
>   16 a  z  - 2 a  z  - ---- + 2 a z  + 13 a  z  - 13 a  z  - 15 a  z  + 
                          a
 
                     6                                                 7
     9  5       6   z        2  6       4  6       6  6      8  6   5 z
>   a  z  - 22 z  + -- - 59 a  z  - 70 a  z  - 29 a  z  + 5 a  z  + ---- - 
                     2                                               a
                    a
 
          7       3  7       5  7       7  7       8       2  8       4  8
>   18 a z  - 47 a  z  - 11 a  z  + 13 a  z  + 11 z  + 18 a  z  + 26 a  z  + 
 
        6  8         9       3  9       5  9      2  10      4  10
>   19 a  z  + 12 a z  + 27 a  z  + 15 a  z  + 5 a  z   + 5 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 301]], Vassiliev[3][Knot[11, Alternating, 301]]}
Out[15]=   
{2, -3}
In[16]:=
Kh[Knot[11, Alternating, 301]][q, t]
Out[16]=   
13   16     1        4        1        9        4        12       9      16
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     12      17      16      15     17    8 t                 2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 12 q t + 4 q t  + 8 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 4 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a301
K11a300
K11a300
K11a302
K11a302