© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a297
K11a297
K11a299
K11a299
K11a298
Knotscape
This page is passe. Go here instead!

   The Knot K11a298

Visit K11a298's page at Knotilus!

Acknowledgement

K11a298 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X18,6,19,5 X2837 X16,10,17,9 X20,12,21,11 X22,14,1,13 X4,16,5,15 X8,18,9,17 X14,20,15,19 X12,22,13,21

Gauss Code: {1, -4, 2, -8, 3, -1, 4, -9, 5, -2, 6, -11, 7, -10, 8, -5, 9, -3, 10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 10 18 2 16 20 22 4 8 14 12

Alexander Polynomial: 5t-3 - 16t-2 + 28t-1 - 33 + 28t - 16t2 + 5t3

Conway Polynomial: 1 + 9z2 + 14z4 + 5z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {131, 6}

Jones Polynomial: q3 - 3q4 + 8q5 - 12q6 + 18q7 - 21q8 + 21q9 - 19q10 + 14q11 - 9q12 + 4q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 3q14 - q16 + q18 + 5q20 - 2q22 + 5q24 - 2q26 - q28 - 5q32 + 2q34 - 2q36 + 2q40 - q42

HOMFLY-PT Polynomial: a-12 - a-12z2 - a-12z4 - 6a-10 - 7a-10z2 + a-10z6 + 6a-8 + 15a-8z2 + 12a-8z4 + 3a-8z6 + 2a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: - a-17z3 + a-17z5 + a-16z2 - 5a-16z4 + 4a-16z6 - 2a-15z + 7a-15z3 - 13a-15z5 + 8a-15z7 - 2a-14z2 + 6a-14z4 - 13a-14z6 + 9a-14z8 - a-13z + 8a-13z3 - 11a-13z5 - a-13z7 + 6a-13z9 + a-12 - 4a-12z2 + 19a-12z4 - 27a-12z6 + 11a-12z8 + 2a-12z10 - 5a-11z + 8a-11z3 + 6a-11z5 - 19a-11z7 + 11a-11z9 + 6a-10 - 21a-10z2 + 34a-10z4 - 29a-10z6 + 8a-10z8 + 2a-10z10 - 6a-9z + 11a-9z3 - 4a-9z5 - 7a-9z7 + 5a-9z9 + 6a-8 - 18a-8z2 + 23a-8z4 - 18a-8z6 + 6a-8z8 + 3a-7z3 - 7a-7z5 + 3a-7z7 + 2a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {9, 25}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11298. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          3 
j = 25         61 
j = 23        83  
j = 21       116   
j = 19      108    
j = 17     1111     
j = 15    710      
j = 13   511       
j = 11  37        
j = 9  5         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 298]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 298]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[18, 6, 19, 5], X[2, 8, 3, 7], 
 
>   X[16, 10, 17, 9], X[20, 12, 21, 11], X[22, 14, 1, 13], X[4, 16, 5, 15], 
 
>   X[8, 18, 9, 17], X[14, 20, 15, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 298]]
Out[4]=   
GaussCode[1, -4, 2, -8, 3, -1, 4, -9, 5, -2, 6, -11, 7, -10, 8, -5, 9, -3, 10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 298]]
Out[5]=   
DTCode[6, 10, 18, 2, 16, 20, 22, 4, 8, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 298]][t]
Out[6]=   
      5    16   28              2      3
-33 + -- - -- + -- + 28 t - 16 t  + 5 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 298]][z]
Out[7]=   
       2       4      6
1 + 9 z  + 14 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 298]}
In[9]:=
{KnotDet[Knot[11, Alternating, 298]], KnotSignature[Knot[11, Alternating, 298]]}
Out[9]=   
{131, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 298]][q]
Out[10]=   
 3      4      5       6       7       8       9       10       11      12
q  - 3 q  + 8 q  - 12 q  + 18 q  - 21 q  + 21 q  - 19 q   + 14 q   - 9 q   + 
 
       13    14
>   4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 298]}
In[12]:=
A2Invariant[Knot[11, Alternating, 298]][q]
Out[12]=   
 10      12      14    16    18      20      22      24      26    28      32
q   - 2 q   + 3 q   - q   + q   + 5 q   - 2 q   + 5 q   - 2 q   - q   - 5 q   + 
 
       34      36      40    42
>   2 q   - 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 298]][a, z]
Out[13]=   
                   2       2       2      2    4        4      4    6       6
 -12    6    6    z     7 z    15 z    2 z    z     12 z    3 z    z     3 z
a    - --- + -- - --- - ---- + ----- + ---- - --- + ----- + ---- + --- + ---- + 
        10    8    12    10      8       6     12     8       6     10     8
       a     a    a     a       a       a     a      a       a     a      a
 
     6
    z
>   --
     6
    a
In[14]:=
Kauffman[Knot[11, Alternating, 298]][a, z]
Out[14]=   
                                           2       2      2       2       2
 -12    6    6    2 z    z    5 z   6 z   z     2 z    4 z    21 z    18 z
a    + --- + -- - --- - --- - --- - --- + --- - ---- - ---- - ----- - ----- + 
        10    8    15    13    11    9     16    14     12      10      8
       a     a    a     a     a     a     a     a      a       a       a
 
       2    3       3      3      3       3      3      4      4       4
    2 z    z     7 z    8 z    8 z    11 z    3 z    5 z    6 z    19 z
>   ---- - --- + ---- + ---- + ---- + ----- + ---- - ---- + ---- + ----- + 
      6     17    15     13     11      9       7     16     14      12
     a     a     a      a      a       a       a     a      a       a
 
        4       4      4    5        5       5      5      5      5      6
    34 z    23 z    3 z    z     13 z    11 z    6 z    4 z    7 z    4 z
>   ----- + ----- - ---- + --- - ----- - ----- + ---- - ---- - ---- + ---- - 
      10      8       6     17     15      13     11      9      7     16
     a       a       a     a      a       a      a       a      a     a
 
        6       6       6       6    6      7    7        7      7      7
    13 z    27 z    29 z    18 z    z    8 z    z     19 z    7 z    3 z
>   ----- - ----- - ----- - ----- + -- + ---- - --- - ----- - ---- + ---- + 
      14      12      10      8      6    15     13     11      9      7
     a       a       a       a      a    a      a      a       a      a
 
       8       8      8      8      9       9      9      10      10
    9 z    11 z    8 z    6 z    6 z    11 z    5 z    2 z     2 z
>   ---- + ----- + ---- + ---- + ---- + ----- + ---- + ----- + -----
     14      12     10      8     13      11      9      12      10
    a       a      a       a     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 298]], Vassiliev[3][Knot[11, Alternating, 298]]}
Out[15]=   
{9, 25}
In[16]:=
Kh[Knot[11, Alternating, 298]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3       13  4
q  + q  + 3 q  t + 5 q  t  + 3 q   t  + 7 q   t  + 5 q   t  + 11 q   t  + 
 
       15  4       15  5       17  5       17  6       19  6      19  7
>   7 q   t  + 10 q   t  + 11 q   t  + 11 q   t  + 10 q   t  + 8 q   t  + 
 
        21  7      21  8      23  8      23  9      25  9    25  10
>   11 q   t  + 6 q   t  + 8 q   t  + 3 q   t  + 6 q   t  + q   t   + 
 
       27  10    29  11
>   3 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a298
K11a297
K11a297
K11a299
K11a299