© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a287
K11a287
K11a289
K11a289
K11a288
Knotscape
This page is passe. Go here instead!

   The Knot K11a288

Visit K11a288's page at Knotilus!

Acknowledgement

K11a288 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,6,17,5 X18,7,19,8 X20,10,21,9 X4,11,5,12 X8,14,9,13 X2,16,3,15 X22,17,1,18 X14,19,15,20 X12,22,13,21

Gauss Code: {1, -8, 2, -6, 3, -1, 4, -7, 5, -2, 6, -11, 7, -10, 8, -3, 9, -4, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 10 16 18 20 4 8 2 22 14 12

Alexander Polynomial: t-4 - 7t-3 + 23t-2 - 44t-1 + 55 - 44t + 23t2 - 7t3 + t4

Conway Polynomial: 1 + z2 + z4 + z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {205, 0}

Jones Polynomial: - q-5 + 5q-4 - 13q-3 + 22q-2 - 29q-1 + 34 - 33q + 29q2 - 21q3 + 12q4 - 5q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + 3q-12 - 5q-10 + 3q-8 + q-6 - 5q-4 + 8q-2 - 5 + 6q2 - q4 - 2q6 + 5q8 - 6q10 + 3q12 - 2q16 + q18

HOMFLY-PT Polynomial: a-4z2 + a-4z4 - a-2 - 4a-2z2 - 5a-2z4 - 2a-2z6 + 3 + 6z2 + 7z4 + 4z6 + z8 - a2 - 2a2z2 - 2a2z4 - a2z6

Kauffman Polynomial: - a-6z4 + a-6z6 + 4a-5z3 - 8a-5z5 + 5a-5z7 - 3a-4z2 + 14a-4z4 - 21a-4z6 + 11a-4z8 - a-3z + 8a-3z3 - 4a-3z5 - 15a-3z7 + 12a-3z9 + a-2 - 12a-2z2 + 47a-2z4 - 65a-2z6 + 21a-2z8 + 5a-2z10 - 2a-1z + 8a-1z3 + 6a-1z5 - 45a-1z7 + 28a-1z9 + 3 - 15z2 + 53z4 - 79z6 + 30z8 + 5z10 - 2az + 10az3 - 13az5 - 12az7 + 16az9 + a2 - 6a2z2 + 19a2z4 - 31a2z6 + 20a2z8 - a3z + 6a3z3 - 14a3z5 + 13a3z7 - 2a4z4 + 5a4z6 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11288. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          4 
j = 9         81 
j = 7        134  
j = 5       168   
j = 3      1713    
j = 1     1716     
j = -1    1318      
j = -3   916       
j = -5  413        
j = -7 19         
j = -9 4          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 288]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 288]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 6, 17, 5], X[18, 7, 19, 8], 
 
>   X[20, 10, 21, 9], X[4, 11, 5, 12], X[8, 14, 9, 13], X[2, 16, 3, 15], 
 
>   X[22, 17, 1, 18], X[14, 19, 15, 20], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 288]]
Out[4]=   
GaussCode[1, -8, 2, -6, 3, -1, 4, -7, 5, -2, 6, -11, 7, -10, 8, -3, 9, -4, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 288]]
Out[5]=   
DTCode[6, 10, 16, 18, 20, 4, 8, 2, 22, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 288]][t]
Out[6]=   
      -4   7    23   44              2      3    4
55 + t   - -- + -- - -- - 44 t + 23 t  - 7 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 288]][z]
Out[7]=   
     2    4    6    8
1 + z  + z  + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 288]}
In[9]:=
{KnotDet[Knot[11, Alternating, 288]], KnotSignature[Knot[11, Alternating, 288]]}
Out[9]=   
{205, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 288]][q]
Out[10]=   
      -5   5    13   22   29              2       3       4      5    6
34 - q   + -- - -- + -- - -- - 33 q + 29 q  - 21 q  + 12 q  - 5 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 288]}
In[12]:=
A2Invariant[Knot[11, Alternating, 288]][q]
Out[12]=   
      -14    3     5    3     -6   5    8       2    4      6      8      10
-5 - q    + --- - --- + -- + q   - -- + -- + 6 q  - q  - 2 q  + 5 q  - 6 q   + 
             12    10    8          4    2
            q     q     q          q    q
 
       12      16    18
>   3 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 288]][a, z]
Out[13]=   
                       2      2                     4      4
     -2    2      2   z    4 z       2  2      4   z    5 z       2  4      6
3 - a   - a  + 6 z  + -- - ---- - 2 a  z  + 7 z  + -- - ---- - 2 a  z  + 4 z  - 
                       4     2                      4     2
                      a     a                      a     a
 
       6
    2 z     2  6    8
>   ---- - a  z  + z
      2
     a
In[14]:=
Kauffman[Knot[11, Alternating, 288]][a, z]
Out[14]=   
                                                    2       2
     -2    2   z    2 z            3         2   3 z    12 z       2  2
3 + a   + a  - -- - --- - 2 a z - a  z - 15 z  - ---- - ----- - 6 a  z  + 
                3    a                             4      2
               a                                  a      a
 
       3      3      3                                4       4       4
    4 z    8 z    8 z          3      3  3       4   z    14 z    47 z
>   ---- + ---- + ---- + 10 a z  + 6 a  z  + 53 z  - -- + ----- + ----- + 
      5      3     a                                  6     4       2
     a      a                                        a     a       a
 
                            5      5      5
        2  4      4  4   8 z    4 z    6 z          5       3  5    5  5
>   19 a  z  - 2 a  z  - ---- - ---- + ---- - 13 a z  - 14 a  z  + a  z  - 
                           5      3     a
                          a      a
 
             6       6       6                           7       7       7
        6   z    21 z    65 z        2  6      4  6   5 z    15 z    45 z
>   79 z  + -- - ----- - ----- - 31 a  z  + 5 a  z  + ---- - ----- - ----- - 
             6     4       2                            5      3       a
            a     a       a                            a      a
 
                                     8       8                  9       9
          7       3  7       8   11 z    21 z        2  8   12 z    28 z
>   12 a z  + 13 a  z  + 30 z  + ----- + ----- + 20 a  z  + ----- + ----- + 
                                   4       2                  3       a
                                  a       a                  a
 
                         10
          9      10   5 z
>   16 a z  + 5 z   + -----
                        2
                       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 288]], Vassiliev[3][Knot[11, Alternating, 288]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, Alternating, 288]][q, t]
Out[16]=   
18            1        4       1       9       4      13       9      16
-- + 17 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    13                 3         3  2       5  2      5  3       7  3
>   --- + 16 q t + 17 q  t + 13 q  t  + 16 q  t  + 8 q  t  + 13 q  t  + 
    q t
 
       7  4      9  4    9  5      11  5    13  6
>   4 q  t  + 8 q  t  + q  t  + 4 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a288
K11a287
K11a287
K11a289
K11a289