© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a285
K11a285
K11a287
K11a287
K11a286
Knotscape
This page is passe. Go here instead!

   The Knot K11a286

Visit K11a286's page at Knotilus!

Acknowledgement

K11a286 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,6,17,5 X18,7,19,8 X14,10,15,9 X2,11,3,12 X20,14,21,13 X4,16,5,15 X22,17,1,18 X12,20,13,19 X8,21,9,22

Gauss Code: {1, -6, 2, -8, 3, -1, 4, -11, 5, -2, 6, -10, 7, -5, 8, -3, 9, -4, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 10 16 18 14 2 20 4 22 12 8

Alexander Polynomial: - t-4 + 6t-3 - 17t-2 + 31t-1 - 37 + 31t - 17t2 + 6t3 - t4

Conway Polynomial: 1 + z2 - z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a196, K11a216, ...}

Determinant and Signature: {147, 2}

Jones Polynomial: - q-4 + 4q-3 - 9q-2 + 15q-1 - 20 + 24q - 23q2 + 21q3 - 16q4 + 9q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + q-10 - 2q-6 + 4q-4 - 3q-2 + 2 + 2q2 - 2q4 + 6q6 - 4q8 + 3q10 - 2q12 - 3q14 + 3q16 - 2q18 + q20

HOMFLY-PT Polynomial: 3a-4z2 + 3a-4z4 + a-4z6 - a-2 - 8a-2z2 - 10a-2z4 - 5a-2z6 - a-2z8 + 3 + 8z2 + 7z4 + 2z6 - a2 - 2a2z2 - a2z4

Kauffman Polynomial: a-8z4 - a-7z3 + 4a-7z5 + a-6z2 - 6a-6z4 + 9a-6z6 - a-5z + 11a-5z3 - 21a-5z5 + 15a-5z7 - 6a-4z2 + 20a-4z4 - 31a-4z6 + 17a-4z8 - 4a-3z + 21a-3z3 - 21a-3z5 - 9a-3z7 + 11a-3z9 + a-2 - 21a-2z2 + 64a-2z4 - 72a-2z6 + 20a-2z8 + 3a-2z10 - 5a-1z + 11a-1z3 + 15a-1z5 - 41a-1z7 + 17a-1z9 + 3 - 20z2 + 51z4 - 45z6 + 7z8 + 3z10 - 3az + 5az3 + 8az5 - 16az7 + 6az9 + a2 - 6a2z2 + 14a2z4 - 13a2z6 + 4a2z8 - a3z + 3a3z3 - 3a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11286. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         61 
j = 9        103  
j = 7       116   
j = 5      1210    
j = 3     1211     
j = 1    913      
j = -1   611       
j = -3  39        
j = -5 16         
j = -7 3          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 286]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 286]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 6, 17, 5], X[18, 7, 19, 8], 
 
>   X[14, 10, 15, 9], X[2, 11, 3, 12], X[20, 14, 21, 13], X[4, 16, 5, 15], 
 
>   X[22, 17, 1, 18], X[12, 20, 13, 19], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 286]]
Out[4]=   
GaussCode[1, -6, 2, -8, 3, -1, 4, -11, 5, -2, 6, -10, 7, -5, 8, -3, 9, -4, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 286]]
Out[5]=   
DTCode[6, 10, 16, 18, 14, 2, 20, 4, 22, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 286]][t]
Out[6]=   
       -4   6    17   31              2      3    4
-37 - t   + -- - -- + -- + 31 t - 17 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 286]][z]
Out[7]=   
     2    4      6    8
1 + z  - z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 196], Knot[11, Alternating, 216], 
 
>   Knot[11, Alternating, 286]}
In[9]:=
{KnotDet[Knot[11, Alternating, 286]], KnotSignature[Knot[11, Alternating, 286]]}
Out[9]=   
{147, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 286]][q]
Out[10]=   
       -4   4    9    15              2       3       4      5      6    7
-20 - q   + -- - -- + -- + 24 q - 23 q  + 21 q  - 16 q  + 9 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 286]}
In[12]:=
A2Invariant[Knot[11, Alternating, 286]][q]
Out[12]=   
     -12    -10   2    4    3       2      4      6      8      10      12
2 - q    + q    - -- + -- - -- + 2 q  - 2 q  + 6 q  - 4 q  + 3 q   - 2 q   - 
                   6    4    2
                  q    q    q
 
       14      16      18    20
>   3 q   + 3 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 286]][a, z]
Out[13]=   
                         2      2                       4       4
     -2    2      2   3 z    8 z       2  2      4   3 z    10 z     2  4
3 - a   - a  + 8 z  + ---- - ---- - 2 a  z  + 7 z  + ---- - ----- - a  z  + 
                        4      2                       4      2
                       a      a                       a      a
 
            6      6    8
       6   z    5 z    z
>   2 z  + -- - ---- - --
            4     2     2
           a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 286]][a, z]
Out[14]=   
                                                        2      2       2
     -2    2   z    4 z   5 z            3         2   z    6 z    21 z
3 + a   + a  - -- - --- - --- - 3 a z - a  z - 20 z  + -- - ---- - ----- - 
                5    3     a                            6     4      2
               a    a                                  a     a      a
 
               3       3       3       3                               4
       2  2   z    11 z    21 z    11 z         3      3  3       4   z
>   6 a  z  - -- + ----- + ----- + ----- + 5 a z  + 3 a  z  + 51 z  + -- - 
               7     5       3       a                                 8
              a     a       a                                         a
 
       4       4       4                 5       5       5       5
    6 z    20 z    64 z        2  4   4 z    21 z    21 z    15 z         5
>   ---- + ----- + ----- + 14 a  z  + ---- - ----- - ----- + ----- + 8 a z  - 
      6      4       2                  7      5       3       a
     a      a       a                  a      a       a
 
                         6       6       6                  7      7       7
       3  5       6   9 z    31 z    72 z        2  6   15 z    9 z    41 z
>   3 a  z  - 45 z  + ---- - ----- - ----- - 13 a  z  + ----- - ---- - ----- - 
                        6      4       2                  5       3      a
                       a      a       a                  a       a
 
                                 8       8                 9       9
          7    3  7      8   17 z    20 z       2  8   11 z    17 z         9
>   16 a z  + a  z  + 7 z  + ----- + ----- + 4 a  z  + ----- + ----- + 6 a z  + 
                               4       2                 3       a
                              a       a                 a
 
               10
       10   3 z
>   3 z   + -----
              2
             a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 286]], Vassiliev[3][Knot[11, Alternating, 286]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, Alternating, 286]][q, t]
Out[16]=   
           3     1       3       1       6       3       9      6     11
13 q + 12 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    9 q       3         5         5  2       7  2      7  3       9  3
>   --- + 11 q  t + 12 q  t + 10 q  t  + 11 q  t  + 6 q  t  + 10 q  t  + 
     t
 
       9  4      11  4    11  5      13  5    15  6
>   3 q  t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a286
K11a285
K11a285
K11a287
K11a287