© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a283
K11a283
K11a285
K11a285
K11a284
Knotscape
This page is passe. Go here instead!

   The Knot K11a284

Visit K11a284's page at Knotilus!

Acknowledgement

K11a284 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,6,17,5 X14,7,15,8 X20,10,21,9 X4,11,5,12 X18,14,19,13 X2,16,3,15 X22,17,1,18 X8,20,9,19 X12,22,13,21

Gauss Code: {1, -8, 2, -6, 3, -1, 4, -10, 5, -2, 6, -11, 7, -4, 8, -3, 9, -7, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 10 16 14 20 4 18 2 22 8 12

Alexander Polynomial: - t-4 + 7t-3 - 21t-2 + 38t-1 - 45 + 38t - 21t2 + 7t3 - t4

Conway Polynomial: 1 + z2 + z4 - z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {179, 2}

Jones Polynomial: q-3 - 5q-2 + 12q-1 - 19 + 26q - 29q2 + 29q3 - 25q4 + 18q5 - 10q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - 3q-6 + 4q-4 - 2q-2 + 5q2 - 6q4 + 6q6 - 4q8 + 2q10 + 2q12 - 4q14 + 5q16 - 3q18 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 2a-4 + 6a-4z2 + 6a-4z4 + 2a-4z6 - a-2 - 4a-2z2 - 6a-2z4 - 4a-2z6 - a-2z8 + 1 + z2 + 2z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 4a-8z4 + 4a-8z6 - 2a-7z + 8a-7z3 - 12a-7z5 + 9a-7z7 + a-6 - 6a-6z2 + 16a-6z4 - 20a-6z6 + 13a-6z8 - 3a-5z + 12a-5z3 - 9a-5z5 - 8a-5z7 + 11a-5z9 + 2a-4 - 16a-4z2 + 47a-4z4 - 57a-4z6 + 20a-4z8 + 4a-4z10 - a-3z + 3a-3z3 + 11a-3z5 - 38a-3z7 + 22a-3z9 + a-2 - 12a-2z2 + 42a-2z4 - 57a-2z6 + 18a-2z8 + 4a-2z10 + 3a-1z3 - a-1z5 - 16a-1z7 + 11a-1z9 + 1 - 3z2 + 14z4 - 23z6 + 11z8 + 3az3 - 8az5 + 5az7 - a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11284. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         71 
j = 11        113  
j = 9       147   
j = 7      1511    
j = 5     1414     
j = 3    1215      
j = 1   815       
j = -1  411        
j = -3 18         
j = -5 4          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 284]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 284]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 6, 17, 5], X[14, 7, 15, 8], 
 
>   X[20, 10, 21, 9], X[4, 11, 5, 12], X[18, 14, 19, 13], X[2, 16, 3, 15], 
 
>   X[22, 17, 1, 18], X[8, 20, 9, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 284]]
Out[4]=   
GaussCode[1, -8, 2, -6, 3, -1, 4, -10, 5, -2, 6, -11, 7, -4, 8, -3, 9, -7, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 284]]
Out[5]=   
DTCode[6, 10, 16, 14, 20, 4, 18, 2, 22, 8, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 284]][t]
Out[6]=   
       -4   7    21   38              2      3    4
-45 - t   + -- - -- + -- + 38 t - 21 t  + 7 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 284]][z]
Out[7]=   
     2    4    6    8
1 + z  + z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 284]}
In[9]:=
{KnotDet[Knot[11, Alternating, 284]], KnotSignature[Knot[11, Alternating, 284]]}
Out[9]=   
{179, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 284]][q]
Out[10]=   
       -3   5    12              2       3       4       5       6      7    8
-19 + q   - -- + -- + 26 q - 29 q  + 29 q  - 25 q  + 18 q  - 10 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 284]}
In[12]:=
A2Invariant[Knot[11, Alternating, 284]][q]
Out[12]=   
 -8   3    4    2       2      4      6      8      10      12      14
q   - -- + -- - -- + 5 q  - 6 q  + 6 q  - 4 q  + 2 q   + 2 q   - 4 q   + 
       6    4    2
      q    q    q
 
       16      18    22    24
>   5 q   - 3 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 284]][a, z]
Out[13]=   
                             2      2      2           4      4      4
     -6   2     -2    2   2 z    6 z    4 z       4   z    6 z    6 z     6
1 - a   + -- - a   + z  - ---- + ---- - ---- + 2 z  - -- + ---- - ---- + z  + 
           4                6      4      2            6     4      2
          a                a      a      a            a     a      a
 
       6      6    8
    2 z    4 z    z
>   ---- - ---- - --
      4      2     2
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 284]][a, z]
Out[14]=   
                                              2      2       2       2    3
     -6   2     -2   2 z   3 z   z       2   z    6 z    16 z    12 z    z
1 + a   + -- + a   - --- - --- - -- - 3 z  + -- - ---- - ----- - ----- - -- + 
           4          7     5     3           8     6      4       2      9
          a          a     a     a           a     a      a       a      a
 
       3       3      3      3                       4       4       4
    8 z    12 z    3 z    3 z         3       4   4 z    16 z    47 z
>   ---- + ----- + ---- + ---- + 3 a z  + 14 z  - ---- + ----- + ----- + 
      7      5       3     a                        8      6       4
     a      a       a                              a      a       a
 
        4            5       5      5       5    5                       6
    42 z     2  4   z    12 z    9 z    11 z    z         5       6   4 z
>   ----- - a  z  + -- - ----- - ---- + ----- - -- - 8 a z  - 23 z  + ---- - 
      2              9     7       5      3     a                       8
     a              a     a       a      a                             a
 
        6       6       6              7      7       7       7
    20 z    57 z    57 z     2  6   9 z    8 z    38 z    16 z         7
>   ----- - ----- - ----- + a  z  + ---- - ---- - ----- - ----- + 5 a z  + 
      6       4       2               7      5      3       a
     a       a       a               a      a      a
 
                8       8       8       9       9       9      10      10
        8   13 z    20 z    18 z    11 z    22 z    11 z    4 z     4 z
>   11 z  + ----- + ----- + ----- + ----- + ----- + ----- + ----- + -----
              6       4       2       5       3       a       4       2
             a       a       a       a       a               a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 284]], Vassiliev[3][Knot[11, Alternating, 284]]}
Out[15]=   
{1, 2}
In[16]:=
Kh[Knot[11, Alternating, 284]][q, t]
Out[16]=   
           3     1       4       1       8      4     11    8 q       3
15 q + 12 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 15 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2       7  3       9  3      9  4       11  4
>   14 q  t + 14 q  t  + 15 q  t  + 11 q  t  + 14 q  t  + 7 q  t  + 11 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 7 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a284
K11a283
K11a283
K11a285
K11a285