© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a27
K11a27
K11a29
K11a29
K11a28
Knotscape
This page is passe. Go here instead!

   The Knot K11a28

Visit K11a28's page at Knotilus!

Acknowledgement

K11a28 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X12,6,13,5 X16,7,17,8 X2,9,3,10 X18,11,19,12 X20,14,21,13 X22,16,1,15 X10,17,11,18 X6,19,7,20 X14,22,15,21

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -3, 7, -11, 8, -4, 9, -6, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 8 12 16 2 18 20 22 10 6 14

Alexander Polynomial: t-4 - 6t-3 + 15t-2 - 24t-1 + 29 - 24t + 15t2 - 6t3 + t4

Conway Polynomial: 1 - 2z2 - z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {10123, ...}

Determinant and Signature: {121, 0}

Jones Polynomial: q-6 - 3q-5 + 7q-4 - 12q-3 + 16q-2 - 19q-1 + 20 - 17q + 13q2 - 8q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a87, K11a96, ...}

A2 (sl(3)) Invariant: q-18 + 2q-12 - 3q-10 + 2q-8 - 2q-6 - 2q-4 + 3q-2 - 3 + 5q2 - 2q4 + q6 + 2q8 - 2q10 + 2q12 - q14

HOMFLY-PT Polynomial: - 2a-2z2 - 3a-2z4 - a-2z6 + 3 + 7z2 + 9z4 + 5z6 + z8 - 4a2 - 10a2z2 - 8a2z4 - 2a2z6 + 2a4 + 3a4z2 + a4z4

Kauffman Polynomial: - a-5z3 + a-5z5 + a-4z2 - 6a-4z4 + 4a-4z6 + 3a-3z3 - 11a-3z5 + 7a-3z7 - 2a-2z2 + 7a-2z4 - 13a-2z6 + 8a-2z8 + a-1z + 2a-1z5 - 7a-1z7 + 6a-1z9 + 3 - 16z2 + 37z4 - 31z6 + 9z8 + 2z10 + 3az - 15az3 + 31az5 - 28az7 + 11az9 + 4a2 - 22a2z2 + 38a2z4 - 28a2z6 + 6a2z8 + 2a2z10 + a3z - 6a3z3 + 9a3z5 - 11a3z7 + 5a3z9 + 2a4 - 7a4z2 + 11a4z4 - 13a4z6 + 5a4z8 - a5z + 5a5z3 - 8a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1128. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          3 
j = 7         51 
j = 5        83  
j = 3       95   
j = 1      118    
j = -1     910     
j = -3    710      
j = -5   59       
j = -7  27        
j = -9 15         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 28]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 28]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[12, 6, 13, 5], X[16, 7, 17, 8], 
 
>   X[2, 9, 3, 10], X[18, 11, 19, 12], X[20, 14, 21, 13], X[22, 16, 1, 15], 
 
>   X[10, 17, 11, 18], X[6, 19, 7, 20], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 28]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -3, 7, -11, 8, -4, 9, -6, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 28]]
Out[5]=   
DTCode[4, 8, 12, 16, 2, 18, 20, 22, 10, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 28]][t]
Out[6]=   
      -4   6    15   24              2      3    4
29 + t   - -- + -- - -- - 24 t + 15 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 28]][z]
Out[7]=   
       2    4      6    8
1 - 2 z  - z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 123], Knot[11, Alternating, 28]}
In[9]:=
{KnotDet[Knot[11, Alternating, 28]], KnotSignature[Knot[11, Alternating, 28]]}
Out[9]=   
{121, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 28]][q]
Out[10]=   
      -6   3    7    12   16   19              2      3      4    5
20 + q   - -- + -- - -- + -- - -- - 17 q + 13 q  - 8 q  + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 28], Knot[11, Alternating, 87], 
 
>   Knot[11, Alternating, 96]}
In[12]:=
A2Invariant[Knot[11, Alternating, 28]][q]
Out[12]=   
      -18    2     3    2    2    2    3       2      4    6      8      10
-3 + q    + --- - --- + -- - -- - -- + -- + 5 q  - 2 q  + q  + 2 q  - 2 q   + 
             12    10    8    6    4    2
            q     q     q    q    q    q
 
       12    14
>   2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 28]][a, z]
Out[13]=   
                            2                                  4
       2      4      2   2 z        2  2      4  2      4   3 z       2  4
3 - 4 a  + 2 a  + 7 z  - ---- - 10 a  z  + 3 a  z  + 9 z  - ---- - 8 a  z  + 
                           2                                  2
                          a                                  a
 
                    6
     4  4      6   z       2  6    8
>   a  z  + 5 z  - -- - 2 a  z  + z
                    2
                   a
In[14]:=
Kauffman[Knot[11, Alternating, 28]][a, z]
Out[14]=   
                                                     2      2
       2      4   z            3      5         2   z    2 z        2  2
3 + 4 a  + 2 a  + - + 3 a z + a  z - a  z - 16 z  + -- - ---- - 22 a  z  - 
                  a                                  4     2
                                                    a     a
 
                         3      3
       4  2      6  2   z    3 z          3      3  3      5  3       4
>   7 a  z  + 2 a  z  - -- + ---- - 15 a z  - 6 a  z  + 5 a  z  + 37 z  - 
                         5     3
                        a     a
 
       4      4                                    5       5      5
    6 z    7 z        2  4       4  4      6  4   z    11 z    2 z          5
>   ---- + ---- + 38 a  z  + 11 a  z  - 3 a  z  + -- - ----- + ---- + 31 a z  + 
      4      2                                     5     3      a
     a      a                                     a     a
 
                                   6       6
       3  5      5  5       6   4 z    13 z        2  6       4  6    6  6
>   9 a  z  - 8 a  z  - 31 z  + ---- - ----- - 28 a  z  - 13 a  z  + a  z  + 
                                  4      2
                                 a      a
 
       7      7                                            8
    7 z    7 z          7       3  7      5  7      8   8 z       2  8
>   ---- - ---- - 28 a z  - 11 a  z  + 3 a  z  + 9 z  + ---- + 6 a  z  + 
      3     a                                             2
     a                                                   a
 
                 9
       4  8   6 z          9      3  9      10      2  10
>   5 a  z  + ---- + 11 a z  + 5 a  z  + 2 z   + 2 a  z
               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 28]], Vassiliev[3][Knot[11, Alternating, 28]]}
Out[15]=   
{-2, 2}
In[16]:=
Kh[Knot[11, Alternating, 28]][q, t]
Out[16]=   
10            1        2        1       5       2       7       5       9
-- + 11 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      7      10     9               3        3  2      5  2      5  3
>   ----- + ---- + --- + 8 q t + 9 q  t + 5 q  t  + 8 q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   5 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a28
K11a27
K11a27
K11a29
K11a29