© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a274
K11a274
K11a276
K11a276
K11a275
Knotscape
This page is passe. Go here instead!

   The Knot K11a275

Visit K11a275's page at Knotilus!

Acknowledgement

K11a275 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X14,6,15,5 X20,8,21,7 X2,10,3,9 X18,12,19,11 X4,14,5,13 X22,15,1,16 X12,18,13,17 X8,20,9,19 X16,21,17,22

Gauss Code: {1, -5, 2, -7, 3, -1, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -6, 10, -4, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 10 14 20 2 18 4 22 12 8 16

Alexander Polynomial: - 3t-3 + 15t-2 - 29t-1 + 35 - 29t + 15t2 - 3t3

Conway Polynomial: 1 + 4z2 - 3z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {K11a344, ...}

Determinant and Signature: {129, 4}

Jones Polynomial: 1 - 3q + 8q2 - 13q3 + 18q4 - 21q5 + 21q6 - 18q7 + 14q8 - 8q9 + 3q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 - q2 + q4 + 3q6 - 3q8 + 4q10 - 2q12 - q14 + 2q16 - 4q18 + 4q20 - 2q22 + 2q24 + 3q26 - 3q28 + q30 - q32 - q34

HOMFLY-PT Polynomial: - 2a-10 - a-10z2 + 4a-8 + 7a-8z2 + 3a-8z4 - 3a-6 - 6a-6z2 - 6a-6z4 - 2a-6z6 + a-4 + 2a-4z2 - a-4z4 - a-4z6 + a-2 + 2a-2z2 + a-2z4

Kauffman Polynomial: a-13z - 2a-13z3 + a-13z5 + a-12z2 - 4a-12z4 + 3a-12z6 - 2a-11z + 6a-11z3 - 9a-11z5 + 6a-11z7 + 2a-10 - 10a-10z2 + 15a-10z4 - 14a-10z6 + 8a-10z8 - 2a-9z + 8a-9z3 - 5a-9z5 - 4a-9z7 + 6a-9z9 + 4a-8 - 20a-8z2 + 36a-8z4 - 32a-8z6 + 11a-8z8 + 2a-8z10 + 2a-7z - 6a-7z3 + 13a-7z5 - 20a-7z7 + 11a-7z9 + 3a-6 - 14a-6z2 + 25a-6z4 - 26a-6z6 + 8a-6z8 + 2a-6z10 + a-5z - 2a-5z3 + a-5z5 - 7a-5z7 + 5a-5z9 + a-4 - 2a-4z2 + 5a-4z4 - 10a-4z6 + 5a-4z8 + 4a-3z3 - 7a-3z5 + 3a-3z7 - a-2 + 3a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 11}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11275. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          2 
j = 19         61 
j = 17        82  
j = 15       106   
j = 13      118    
j = 11     1010     
j = 9    811      
j = 7   510       
j = 5  38        
j = 3 16         
j = 1 2          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 275]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 275]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[18, 12, 19, 11], X[4, 14, 5, 13], X[22, 15, 1, 16], 
 
>   X[12, 18, 13, 17], X[8, 20, 9, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 275]]
Out[4]=   
GaussCode[1, -5, 2, -7, 3, -1, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -6, 10, 
 
>   -4, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 275]]
Out[5]=   
DTCode[6, 10, 14, 20, 2, 18, 4, 22, 12, 8, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 275]][t]
Out[6]=   
     3    15   29              2      3
35 - -- + -- - -- - 29 t + 15 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 275]][z]
Out[7]=   
       2      4      6
1 + 4 z  - 3 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 275], Knot[11, Alternating, 344]}
In[9]:=
{KnotDet[Knot[11, Alternating, 275]], KnotSignature[Knot[11, Alternating, 275]]}
Out[9]=   
{129, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 275]][q]
Out[10]=   
             2       3       4       5       6       7       8      9      10
1 - 3 q + 8 q  - 13 q  + 18 q  - 21 q  + 21 q  - 18 q  + 14 q  - 8 q  + 3 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 275]}
In[12]:=
A2Invariant[Knot[11, Alternating, 275]][q]
Out[12]=   
     2    4      6      8      10      12    14      16      18      20
1 - q  + q  + 3 q  - 3 q  + 4 q   - 2 q   - q   + 2 q   - 4 q   + 4 q   - 
 
       22      24      26      28    30    32    34
>   2 q   + 2 q   + 3 q   - 3 q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 275]][a, z]
Out[13]=   
                             2       2      2      2      2      4      4
-2    4    3     -4    -2   z     7 z    6 z    2 z    2 z    3 z    6 z
--- + -- - -- + a   + a   - --- + ---- - ---- + ---- + ---- + ---- - ---- - 
 10    8    6                10     8      6      4      2      8      6
a     a    a                a      a      a      a      a      a      a
 
     4    4      6    6
    z    z    2 z    z
>   -- + -- - ---- - --
     4    2     6     4
    a    a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 275]][a, z]
Out[14]=   
                                                          2        2       2
 2    4    3     -4    -2    z    2 z   2 z   2 z   z    z     10 z    20 z
--- + -- + -- + a   - a   + --- - --- - --- + --- + -- + --- - ----- - ----- - 
 10    8    6                13    11    9     7     5    12     10      8
a     a    a                a     a     a     a     a    a      a       a
 
        2      2      2      3      3      3      3      3      3      4
    14 z    2 z    3 z    2 z    6 z    8 z    6 z    2 z    4 z    4 z
>   ----- - ---- + ---- - ---- + ---- + ---- - ---- - ---- + ---- - ---- + 
      6       4      2     13     11      9      7      5      3     12
     a       a      a     a      a       a      a      a      a     a
 
        4       4       4      4      4    5       5      5       5    5
    15 z    36 z    25 z    5 z    3 z    z     9 z    5 z    13 z    z
>   ----- + ----- + ----- + ---- - ---- + --- - ---- - ---- + ----- + -- - 
      10      8       6       4      2     13    11      9      7      5
     a       a       a       a      a     a     a       a      a      a
 
       5      6       6       6       6       6    6      7      7       7
    7 z    3 z    14 z    32 z    26 z    10 z    z    6 z    4 z    20 z
>   ---- + ---- - ----- - ----- - ----- - ----- + -- + ---- - ---- - ----- - 
      3     12      10      8       6       4      2    11      9      7
     a     a       a       a       a       a      a    a       a      a
 
       7      7      8       8      8      8      9       9      9      10
    7 z    3 z    8 z    11 z    8 z    5 z    6 z    11 z    5 z    2 z
>   ---- + ---- + ---- + ----- + ---- + ---- + ---- + ----- + ---- + ----- + 
      5      3     10      8       6      4      9      7       5      8
     a      a     a       a       a      a      a      a       a      a
 
       10
    2 z
>   -----
      6
     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 275]], Vassiliev[3][Knot[11, Alternating, 275]]}
Out[15]=   
{4, 11}
In[16]:=
Kh[Knot[11, Alternating, 275]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7         7  2      9  2
6 q  + 3 q  + ---- + --- + -- + 8 q  t + 5 q  t + 10 q  t  + 8 q  t  + 
                 2    t    t
              q t
 
        9  3       11  3       11  4       13  4      13  5       15  5
>   11 q  t  + 10 q   t  + 10 q   t  + 11 q   t  + 8 q   t  + 10 q   t  + 
 
       15  6      17  6      17  7      19  7    19  8      21  8    23  9
>   6 q   t  + 8 q   t  + 2 q   t  + 6 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a275
K11a274
K11a274
K11a276
K11a276