© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a271
K11a271
K11a273
K11a273
K11a272
Knotscape
This page is passe. Go here instead!

   The Knot K11a272

Visit K11a272's page at Knotilus!

Acknowledgement

K11a272 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X12,6,13,5 X22,8,1,7 X18,10,19,9 X16,11,17,12 X20,13,21,14 X4,16,5,15 X2,17,3,18 X14,19,15,20 X8,22,9,21

Gauss Code: {1, -9, 2, -8, 3, -1, 4, -11, 5, -2, 6, -3, 7, -10, 8, -6, 9, -5, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 10 12 22 18 16 20 4 2 14 8

Alexander Polynomial: - 2t-3 + 13t-2 - 35t-1 + 49 - 35t + 13t2 - 2t3

Conway Polynomial: 1 - z2 + z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a30, ...}

Determinant and Signature: {149, 0}

Jones Polynomial: - q-5 + 4q-4 - 9q-3 + 16q-2 - 21q-1 + 24 - 24q + 21q2 - 15q3 + 9q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a30, K11a189, ...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 4q-10 + 3q-8 + q-6 - 3q-4 + 5q-2 - 3 + 3q2 - q4 - 2q6 + 4q8 - 5q10 + 2q12 + 2q14 - 2q16 + q18

HOMFLY-PT Polynomial: a-4 + a-4z2 + a-4z4 - 2a-2 - 4a-2z2 - 2a-2z4 - a-2z6 + 2 + 2z2 - z6 + a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: - 2a-6z4 + a-6z6 + 4a-5z3 - 9a-5z5 + 4a-5z7 + a-4 - 6a-4z2 + 18a-4z4 - 21a-4z6 + 8a-4z8 + 2a-3z - 5a-3z3 + 12a-3z5 - 17a-3z7 + 8a-3z9 + 2a-2 - 16a-2z2 + 40a-2z4 - 39a-2z6 + 10a-2z8 + 3a-2z10 + 3a-1z - 16a-1z3 + 31a-1z5 - 35a-1z7 + 16a-1z9 + 2 - 13z2 + 30z4 - 34z6 + 12z8 + 3z10 + az - az3 - 2az5 - 6az7 + 8az9 - a2z2 + 5a2z4 - 13a2z6 + 10a2z8 + 5a3z3 - 11a3z5 + 8a3z7 + 2a4z2 - 5a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11272. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         61 
j = 7        93  
j = 5       126   
j = 3      129    
j = 1     1212     
j = -1    1013      
j = -3   611       
j = -5  310        
j = -7 16         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 272]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 272]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[22, 8, 1, 7], 
 
>   X[18, 10, 19, 9], X[16, 11, 17, 12], X[20, 13, 21, 14], X[4, 16, 5, 15], 
 
>   X[2, 17, 3, 18], X[14, 19, 15, 20], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 272]]
Out[4]=   
GaussCode[1, -9, 2, -8, 3, -1, 4, -11, 5, -2, 6, -3, 7, -10, 8, -6, 9, -5, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 272]]
Out[5]=   
DTCode[6, 10, 12, 22, 18, 16, 20, 4, 2, 14, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 272]][t]
Out[6]=   
     2    13   35              2      3
49 - -- + -- - -- - 35 t + 13 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 272]][z]
Out[7]=   
     2    4      6
1 - z  + z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 30], Knot[11, Alternating, 272]}
In[9]:=
{KnotDet[Knot[11, Alternating, 272]], KnotSignature[Knot[11, Alternating, 272]]}
Out[9]=   
{149, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 272]][q]
Out[10]=   
      -5   4    9    16   21              2       3      4      5    6
24 - q   + -- - -- + -- - -- - 24 q + 21 q  - 15 q  + 9 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 30], Knot[11, Alternating, 189], 
 
>   Knot[11, Alternating, 272]}
In[12]:=
A2Invariant[Knot[11, Alternating, 272]][q]
Out[12]=   
      -16    -14    2     4    3     -6   3    5       2    4      6      8
-3 - q    + q    + --- - --- + -- + q   - -- + -- + 3 q  - q  - 2 q  + 4 q  - 
                    12    10    8          4    2
                   q     q     q          q    q
 
       10      12      14      16    18
>   5 q   + 2 q   + 2 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 272]][a, z]
Out[13]=   
                       2      2                    4      4                   6
     -4   2       2   z    4 z     2  2    4  2   z    2 z       2  4    6   z
2 + a   - -- + 2 z  + -- - ---- + a  z  - a  z  + -- - ---- + 2 a  z  - z  - --
           2           4     2                     4     2                    2
          a           a     a                     a     a                    a
In[14]:=
Kauffman[Knot[11, Alternating, 272]][a, z]
Out[14]=   
                                            2       2
     -4   2    2 z   3 z             2   6 z    16 z     2  2      4  2
2 + a   + -- + --- + --- + a z - 13 z  - ---- - ----- - a  z  + 2 a  z  + 
           2    3     a                    4      2
          a    a                          a      a
 
       3      3       3                                       4       4
    4 z    5 z    16 z       3      3  3    5  3       4   2 z    18 z
>   ---- - ---- - ----- - a z  + 5 a  z  - a  z  + 30 z  - ---- + ----- + 
      5      3      a                                        6      4
     a      a                                               a      a
 
        4                          5       5       5
    40 z       2  4      4  4   9 z    12 z    31 z         5       3  5
>   ----- + 5 a  z  - 5 a  z  - ---- + ----- + ----- - 2 a z  - 11 a  z  + 
      2                           5      3       a
     a                           a      a
 
                     6       6       6                           7       7
     5  5       6   z    21 z    39 z        2  6      4  6   4 z    17 z
>   a  z  - 34 z  + -- - ----- - ----- - 13 a  z  + 4 a  z  + ---- - ----- - 
                     6     4       2                            5      3
                    a     a       a                            a      a
 
        7                                 8       8                 9       9
    35 z         7      3  7       8   8 z    10 z        2  8   8 z    16 z
>   ----- - 6 a z  + 8 a  z  + 12 z  + ---- + ----- + 10 a  z  + ---- + ----- + 
      a                                  4      2                  3      a
                                        a      a                  a
 
                        10
         9      10   3 z
>   8 a z  + 3 z   + -----
                       2
                      a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 272]], Vassiliev[3][Knot[11, Alternating, 272]]}
Out[15]=   
{-1, -1}
In[16]:=
Kh[Knot[11, Alternating, 272]][q, t]
Out[16]=   
13            1        3       1       6       3      10       6      11
-- + 12 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    10                 3        3  2       5  2      5  3      7  3      7  4
>   --- + 12 q t + 12 q  t + 9 q  t  + 12 q  t  + 6 q  t  + 9 q  t  + 3 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   6 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a272
K11a271
K11a271
K11a273
K11a273