© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a268
K11a268
K11a270
K11a270
K11a269
Knotscape
This page is passe. Go here instead!

   The Knot K11a269

Visit K11a269's page at Knotilus!

Acknowledgement

K11a269 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X12,6,13,5 X20,8,21,7 X16,10,17,9 X18,11,19,12 X22,13,1,14 X8,16,9,15 X4,18,5,17 X2,19,3,20 X14,21,15,22

Gauss Code: {1, -10, 2, -9, 3, -1, 4, -8, 5, -2, 6, -3, 7, -11, 8, -5, 9, -6, 10, -4, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 10 12 20 16 18 22 8 4 2 14

Alexander Polynomial: - t-4 + 6t-3 - 18t-2 + 32t-1 - 37 + 32t - 18t2 + 6t3 - t4

Conway Polynomial: 1 - 2z2 - 2z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {151, 2}

Jones Polynomial: - q-4 + 5q-3 - 10q-2 + 16q-1 - 21 + 24q - 24q2 + 21q3 - 15q4 + 9q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + 2q-10 + q-8 - q-6 + 4q-4 - 4q-2 + 1 - 3q4 + 5q6 - 4q8 + 4q10 - q12 - 2q14 + 3q16 - 2q18 + q20

HOMFLY-PT Polynomial: a-4 + 3a-4z2 + 3a-4z4 + a-4z6 - a-2 - 8a-2z2 - 10a-2z4 - 5a-2z6 - a-2z8 + 4z2 + 6z4 + 2z6 + a2 - a2z2 - a2z4

Kauffman Polynomial: a-8z4 - a-7z3 + 4a-7z5 + 2a-6z2 - 7a-6z4 + 9a-6z6 - a-5z + 8a-5z3 - 18a-5z5 + 14a-5z7 + a-4 - 5a-4z2 + 15a-4z4 - 27a-4z6 + 16a-4z8 - a-3z + 7a-3z3 - 5a-3z5 - 16a-3z7 + 12a-3z9 + a-2 - 16a-2z2 + 55a-2z4 - 63a-2z6 + 15a-2z8 + 4a-2z10 - a-1z - 4a-1z3 + 37a-1z5 - 55a-1z7 + 20a-1z9 - 10z2 + 44z4 - 42z6 + 4z8 + 4z10 - az - az3 + 18az5 - 24az7 + 8az9 - a2 - a2z2 + 12a2z4 - 15a2z6 + 5a2z8 + a3z3 - 2a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11269. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         61 
j = 9        93  
j = 7       126   
j = 5      129    
j = 3     1212     
j = 1    1013      
j = -1   611       
j = -3  410        
j = -5 16         
j = -7 4          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 269]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 269]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], 
 
>   X[16, 10, 17, 9], X[18, 11, 19, 12], X[22, 13, 1, 14], X[8, 16, 9, 15], 
 
>   X[4, 18, 5, 17], X[2, 19, 3, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 269]]
Out[4]=   
GaussCode[1, -10, 2, -9, 3, -1, 4, -8, 5, -2, 6, -3, 7, -11, 8, -5, 9, -6, 10, 
 
>   -4, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 269]]
Out[5]=   
DTCode[6, 10, 12, 20, 16, 18, 22, 8, 4, 2, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 269]][t]
Out[6]=   
       -4   6    18   32              2      3    4
-37 - t   + -- - -- + -- + 32 t - 18 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 269]][z]
Out[7]=   
       2      4      6    8
1 - 2 z  - 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 269]}
In[9]:=
{KnotDet[Knot[11, Alternating, 269]], KnotSignature[Knot[11, Alternating, 269]]}
Out[9]=   
{151, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 269]][q]
Out[10]=   
       -4   5    10   16              2       3       4      5      6    7
-21 - q   + -- - -- + -- + 24 q - 24 q  + 21 q  - 15 q  + 9 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 269]}
In[12]:=
A2Invariant[Knot[11, Alternating, 269]][q]
Out[12]=   
     -12    2     -8    -6   4    4       4      6      8      10    12
1 - q    + --- + q   - q   + -- - -- - 3 q  + 5 q  - 4 q  + 4 q   - q   - 
            10                4    2
           q                 q    q
 
       14      16      18    20
>   2 q   + 3 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 269]][a, z]
Out[13]=   
                           2      2                     4       4
 -4    -2    2      2   3 z    8 z     2  2      4   3 z    10 z     2  4
a   - a   + a  + 4 z  + ---- - ---- - a  z  + 6 z  + ---- - ----- - a  z  + 
                          4      2                     4      2
                         a      a                     a      a
 
            6      6    8
       6   z    5 z    z
>   2 z  + -- - ---- - --
            4     2     2
           a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 269]][a, z]
Out[14]=   
                                                2      2       2            3
 -4    -2    2   z    z    z             2   2 z    5 z    16 z     2  2   z
a   + a   - a  - -- - -- - - - a z - 10 z  + ---- - ---- - ----- - a  z  - -- + 
                  5    3   a                   6      4      2              7
                 a    a                       a      a      a              a
 
       3      3      3                           4      4       4       4
    8 z    7 z    4 z       3    3  3       4   z    7 z    15 z    55 z
>   ---- + ---- - ---- - a z  + a  z  + 44 z  + -- - ---- + ----- + ----- + 
      5      3     a                             8     6      4       2
     a      a                                   a     a      a       a
 
                  5       5      5       5                                  6
        2  4   4 z    18 z    5 z    37 z          5      3  5       6   9 z
>   12 a  z  + ---- - ----- - ---- + ----- + 18 a z  - 2 a  z  - 42 z  + ---- - 
                 7      5       3      a                                   6
                a      a       a                                          a
 
        6       6                  7       7       7
    27 z    63 z        2  6   14 z    16 z    55 z          7    3  7      8
>   ----- - ----- - 15 a  z  + ----- - ----- - ----- - 24 a z  + a  z  + 4 z  + 
      4       2                  5       3       a
     a       a                  a       a
 
        8       8                 9       9                       10
    16 z    15 z       2  8   12 z    20 z         9      10   4 z
>   ----- + ----- + 5 a  z  + ----- + ----- + 8 a z  + 4 z   + -----
      4       2                 3       a                        2
     a       a                 a                                a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 269]], Vassiliev[3][Knot[11, Alternating, 269]]}
Out[15]=   
{-2, -1}
In[16]:=
Kh[Knot[11, Alternating, 269]][q, t]
Out[16]=   
           3     1       4       1       6       4      10      6     11
13 q + 12 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    10 q       3         5        5  2       7  2      7  3      9  3
>   ---- + 12 q  t + 12 q  t + 9 q  t  + 12 q  t  + 6 q  t  + 9 q  t  + 
     t
 
       9  4      11  4    11  5      13  5    15  6
>   3 q  t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a269
K11a268
K11a268
K11a270
K11a270