© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a25
K11a25
K11a27
K11a27
K11a26
Knotscape
This page is passe. Go here instead!

   The Knot K11a26

Visit K11a26's page at Knotilus!

Acknowledgement

K11a26 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X20,9,21,10 X18,12,19,11 X6,13,7,14 X10,16,11,15 X22,17,1,18 X14,20,15,19 X16,21,17,22

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, -6, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 20 18 6 10 22 14 16

Alexander Polynomial: t-4 - 6t-3 + 18t-2 - 33t-1 + 41 - 33t + 18t2 - 6t3 + t4

Conway Polynomial: 1 + z2 + 2z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a24, K11a315, ...}

Determinant and Signature: {157, 0}

Jones Polynomial: - q-5 + 4q-4 - 10q-3 + 17q-2 - 22q-1 + 26 - 25q + 22q2 - 16q3 + 9q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a24, K11a315, ...}

A2 (sl(3)) Invariant: - q-14 + 2q-12 - 4q-10 + 2q-8 + q-6 - 3q-4 + 7q-2 - 3 + 5q2 - q4 - 2q6 + 3q8 - 5q10 + 2q12 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 4a-2 - 9a-2z2 - 7a-2z4 - 2a-2z6 + 6 + 12z2 + 11z4 + 5z6 + z8 - 2a2 - 4a2z2 - 3a2z4 - a2z6

Kauffman Polynomial: a-6z2 - 2a-6z4 + a-6z6 - 2a-5z + 7a-5z3 - 9a-5z5 + 4a-5z7 + a-4 - 3a-4z2 + 9a-4z4 - 14a-4z6 + 7a-4z8 - 7a-3z + 22a-3z3 - 21a-3z5 - a-3z7 + 6a-3z9 + 4a-2 - 18a-2z2 + 42a-2z4 - 50a-2z6 + 18a-2z8 + 2a-2z10 - 10a-1z + 30a-1z3 - 24a-1z5 - 12a-1z7 + 14a-1z9 + 6 - 23z2 + 50z4 - 58z6 + 23z8 + 2z10 - 8az + 25az3 - 26az5 + 2az7 + 8az9 + 2a2 - 8a2z2 + 15a2z4 - 19a2z6 + 12a2z8 - 3a3z + 9a3z3 - 13a3z5 + 9a3z7 + a4z2 - 4a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         61 
j = 7        103  
j = 5       126   
j = 3      1310    
j = 1     1312     
j = -1    1014      
j = -3   712       
j = -5  310        
j = -7 17         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 26]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 26]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[20, 9, 21, 10], X[18, 12, 19, 11], X[6, 13, 7, 14], X[10, 16, 11, 15], 
 
>   X[22, 17, 1, 18], X[14, 20, 15, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 26]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, -6, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 26]]
Out[5]=   
DTCode[4, 8, 12, 2, 20, 18, 6, 10, 22, 14, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 26]][t]
Out[6]=   
      -4   6    18   33              2      3    4
41 + t   - -- + -- - -- - 33 t + 18 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 26]][z]
Out[7]=   
     2      4      6    8
1 + z  + 2 z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 24], Knot[11, Alternating, 26], 
 
>   Knot[11, Alternating, 315]}
In[9]:=
{KnotDet[Knot[11, Alternating, 26]], KnotSignature[Knot[11, Alternating, 26]]}
Out[9]=   
{157, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 26]][q]
Out[10]=   
      -5   4    10   17   22              2       3      4      5    6
26 - q   + -- - -- + -- - -- - 25 q + 22 q  - 16 q  + 9 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 24], Knot[11, Alternating, 26], 
 
>   Knot[11, Alternating, 315]}
In[12]:=
A2Invariant[Knot[11, Alternating, 26]][q]
Out[12]=   
      -14    2     4    2     -6   3    7       2    4      6      8      10
-3 - q    + --- - --- + -- + q   - -- + -- + 5 q  - q  - 2 q  + 3 q  - 5 q   + 
             12    10    8          4    2
            q     q     q          q    q
 
       12    16    18
>   2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 26]][a, z]
Out[13]=   
                                 2      2                      4      4
     -4   4       2       2   2 z    9 z       2  2       4   z    7 z
6 + a   - -- - 2 a  + 12 z  + ---- - ---- - 4 a  z  + 11 z  + -- - ---- - 
           2                    4      2                       4     2
          a                    a      a                       a     a
 
                        6
       2  4      6   2 z     2  6    8
>   3 a  z  + 5 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 26]][a, z]
Out[14]=   
                                                                   2      2
     -4   4       2   2 z   7 z   10 z              3         2   z    3 z
6 + a   + -- + 2 a  - --- - --- - ---- - 8 a z - 3 a  z - 23 z  + -- - ---- - 
           2           5     3     a                               6     4
          a           a     a                                     a     a
 
        2                        3       3       3
    18 z       2  2    4  2   7 z    22 z    30 z          3      3  3
>   ----- - 8 a  z  + a  z  + ---- + ----- + ----- + 25 a z  + 9 a  z  - 
      2                         5      3       a
     a                         a      a
 
                       4      4       4                           5       5
     5  3       4   2 z    9 z    42 z        2  4      4  4   9 z    21 z
>   a  z  + 50 z  - ---- + ---- + ----- + 15 a  z  - 4 a  z  - ---- - ----- - 
                      6      4      2                            5      3
                     a      a      a                            a      a
 
        5                                         6       6       6
    24 z          5       3  5    5  5       6   z    14 z    50 z
>   ----- - 26 a z  - 13 a  z  + a  z  - 58 z  + -- - ----- - ----- - 
      a                                           6     4       2
                                                 a     a       a
 
                            7    7       7                                 8
        2  6      4  6   4 z    z    12 z         7      3  7       8   7 z
>   19 a  z  + 4 a  z  + ---- - -- - ----- + 2 a z  + 9 a  z  + 23 z  + ---- + 
                           5     3     a                                  4
                          a     a                                        a
 
        8                 9       9                       10
    18 z        2  8   6 z    14 z         9      10   2 z
>   ----- + 12 a  z  + ---- + ----- + 8 a z  + 2 z   + -----
      2                  3      a                        2
     a                  a                               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 26]], Vassiliev[3][Knot[11, Alternating, 26]]}
Out[15]=   
{1, -1}
In[16]:=
Kh[Knot[11, Alternating, 26]][q, t]
Out[16]=   
14            1        3       1       7       3      10       7      12
-- + 13 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    10                 3         3  2       5  2      5  3       7  3
>   --- + 12 q t + 13 q  t + 10 q  t  + 12 q  t  + 6 q  t  + 10 q  t  + 
    q t
 
       7  4      9  4    9  5      11  5    13  6
>   3 q  t  + 6 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a26
K11a25
K11a25
K11a27
K11a27